List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. Journal of Polymer Science Part A, 2012, 50, 3225-3258.	2.3	349
2	Single Conical Nanopores Displaying pH-Tunable Rectifying Characteristics. Manipulating Ionic Transport With Zwitterionic Polymer Brushes. Journal of the American Chemical Society, 2009, 131, 2070-2071.	13.7	341
3	Synthetic Proton-Gated Ion Channels via Single Solid-State Nanochannels Modified with Responsive Polymer Brushes. Nano Letters, 2009, 9, 2788-2793.	9.1	299
4	Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 2008, 130, 16351-16357.	13.7	270
5	Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chemical Society Reviews, 2011, 40, 1107.	38.1	266
6	Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 2010, 132, 8338-8348.	13.7	265
7	lonic Transport Through Single Solidâ€6tate Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small, 2009, 5, 1287-1291.	10.0	244
8	UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association. Angewandte Chemie - International Edition, 2006, 45, 1770-1774.	13.8	223
9	Switching the Properties of Polyelectrolyte Brushes via "Hydrophobic Collapse― Macromolecules, 2005, 38, 10192-10199.	4.8	175
10	Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters. Journal of the American Chemical Society, 2010, 132, 12404-12411.	13.7	171
11	Locking and Unlocking of Polyelectrolyte Brushes: Toward the Fabrication of Chemically Controlled Nanoactuators. Angewandte Chemie - International Edition, 2005, 44, 4578-4581.	13.8	150
12	Synthesis and Characterization of Poly(3-Sulfopropylmethacrylate) Brushes for Potential Antibacterial Applications. Langmuir, 2007, 23, 3314-3321.	3.5	150
13	Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 2015, 51, 6050-6075.	4.1	149
14	Bioinspired integrated nanosystems based on solid-state nanopores: "iontronic―transduction of biological, chemical and physical stimuli. Chemical Science, 2017, 8, 890-913.	7.4	136
15	Mesoporous Films and Polymer Brushes Helping Each Other To Modulate Ionic Transport in Nanoconfined Environments. An Interesting Example of Synergism in Functional Hybrid Assemblies. Journal of the American Chemical Society, 2009, 131, 10866-10868.	13.7	135
16	Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 2015, 137, 6011-6017.	13.7	131
17	Molecular Design of Solidâ€State Nanopores: Fundamental Concepts and Applications. Advanced Materials, 2019, 31, e1901483.	21.0	130
18	Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chemical Society Reviews, 2019, 48, 814-849.	38.1	122

#	Article	IF	CITATIONS
19	Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics, 2017, 92, 661-667.	10.1	119
20	Thickness-Dependent Properties of Polyzwitterionic Brushes. Macromolecules, 2008, 41, 6317-6321.	4.8	116
21	Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chemical Communications, 2010, 46, 1908-1910.	4.1	111
22	Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosensors and Bioelectronics, 2020, 148, 111796.	10.1	99
23	Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers. Journal of the American Chemical Society, 2015, 137, 15382-15385.	13.7	94
24	Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties. Nano Letters, 2018, 18, 3303-3310.	9.1	91
25	Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances, 2021, 7, eabh2848.	10.3	87
26	Synthesis of gold nanoparticles inside polyelectrolyte brushes. Journal of Materials Chemistry, 2007, 17, 3433.	6.7	85
27	Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale, 2015, 7, 15594-15598.	5.6	82
28	AFM study of cationically charged polymer brushes: switching between soft and hard matter. Soft Matter, 2005, 1, 66.	2.7	80
29	Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy, 2020, 71, 104612.	16.0	80
30	Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter, 2011, 7, 8709.	2.7	77
31	Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale, 2016, 8, 9890-9918.	5.6	74
32	Polyelectrolyte Brushes as Efficient Ultrathin Platforms for Site-Selective Copper Electroless Deposition. Langmuir, 2006, 22, 6730-6733.	3.5	73
33	Photoresponsive Polymer Brushes for Hydrophilic Patterning. Langmuir, 2009, 25, 1744-1749.	3.5	71
34	Electrochemical Characteristics of Polyelectrolyte Brushes with Electroactive Counterions. Langmuir, 2007, 23, 10389-10394.	3.5	69
35	An Allâ€Plastic Fieldâ€Effect Nanofluidic Diode Gated by a Conducting Polymer Layer. Advanced Materials, 2017, 29, 1700972.	21.0	68
36	Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures. Langmuir, 2012, 28, 3583-3592.	3.5	67

#	Article	IF	CITATIONS
37	Facile molecular design of hybrid functional assemblies with controllable transport properties: mesoporous films meet polyelectrolyte brushes. Chemical Communications, 2009, , 2553.	4.1	65
38	Following Polymer Brush Growth Using the Quartz Crystal Microbalance Technique. Macromolecular Rapid Communications, 2005, 26, 1117-1121.	3.9	64
39	Nanochemistry in Confined Environments: Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles inside Ordered Mesoporous Thin Films. Langmuir, 2010, 26, 5559-5567.	3.5	61
40	Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine. Biosensors and Bioelectronics, 2018, 115, 104-110.	10.1	61
41	Mesoporous Hybrid Thin Film Membranes with PMETAC@Silica Architectures: Controlling Ionic Gating through the Tuning of Polyelectrolyte Density. Chemistry of Materials, 2015, 27, 808-821.	6.7	60
42	Nanofluidic osmotic power generators – advanced nanoporous membranes and nanochannels for blue energy harvesting. Chemical Science, 2021, 12, 12874-12910.	7.4	60
43	A facile route for the preparation of azide-terminated polymers. "Clicking―polyelectrolyte brushes on planar surfaces and nanochannels. Polymer Chemistry, 2010, 1, 183-192.	3.9	59
44	Light-activated gating and permselectivity in interfacial architectures combining "caged―polymer brushes and mesoporous thin films. Chemical Communications, 2012, 48, 1422-1424.	4.1	59
45	Mechanically Induced Generation of Counterions Inside Surface-Grafted Charged Macromolecular Films: Towards Enhanced Mechanotransduction in Artificial Systems. Angewandte Chemie - International Edition, 2006, 45, 7440-7443.	13.8	57
46	Phosphateâ€Responsive Biomimetic Nanofluidic Diodes Regulated by Polyamine–Phosphate Interactions: Insights into Their Functional Behavior from Theory and Experiment. Small, 2018, 14, e1702131.	10.0	57
47	Facile Large-Scale Fabrication of Proton Conducting Channels. Journal of the American Chemical Society, 2008, 130, 13140-13144.	13.7	56
48	Highly Protonâ€Conducting Selfâ€Humidifying Microchannels Generated by Copolymer Brushes on a Scaffold. Angewandte Chemie - International Edition, 2009, 48, 3124-3128.	13.8	56
49	Tailoring of Poly(ether ether ketone) Surface Properties via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009, 25, 6214-6220.	3.5	54
50	Polymer brush resist for responsive wettability. Soft Matter, 2009, 5, 2738.	2.7	54
51	Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes. Journal of Physical Chemistry C, 2016, 120, 4789-4798.	3.1	52
52	Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. Journal of Physical Chemistry C, 2018, 122, 10181-10188.	3.1	51
53	Explanation for the Apparent Absence of Collapse of Polyelectrolyte Brushes in the Presence of Bulky Ions. Journal of Physical Chemistry B, 2007, 111, 7034-7040.	2.6	49
54	Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Interfaces, 2019, 11, 30001-30009.	8.0	49

OMAR AZZARONI

#	Article	IF	CITATIONS
55	The Effect of [Cul]/[Cull] Ratio on the Kinetics and Conformation of Polyelectrolyte Brushes by Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2006, 27, 1632-1636.	3.9	48
56	Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale, 2016, 8, 1470-1478.	5.6	47
57	Biomimetic solid-state nanochannels for chemical and biological sensing applications. TrAC - Trends in Analytical Chemistry, 2021, 144, 116425.	11.4	47
58	Self-limited self-assembly of nanoparticles into supraparticles: towards supramolecular colloidal materials by design. Molecular Systems Design and Engineering, 2016, 1, 155-162.	3.4	46
59	Manipulation of Molecular Transport into Mesoporous Silica Thin Films by the Infiltration of Polyelectrolytes. Langmuir, 2011, 27, 4328-4333.	3.5	45
60	Supramolecular Surface Chemistry: Substrateâ€Independent, Phosphateâ€Driven Growth of Polyamineâ€Based Multifunctional Thin Films. Advanced Functional Materials, 2015, 25, 4144-4152.	14.9	45
61	Phototunable Response in Caged Polymer Brushes. Macromolecules, 2012, 45, 3213-3220.	4.8	43
62	Thermally-induced softening of PNIPAm-based nanopillar arrays. Soft Matter, 2017, 13, 2453-2464.	2.7	43
63	Polymer Brushes with Phototriggered and Phototunable Swelling and pH Response. Macromolecular Rapid Communications, 2011, 32, 1699-1703.	3.9	42
64	Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces. Physical Chemistry Chemical Physics, 2012, 14, 11027.	2.8	41
65	Highly-organized stacked multilayers <i>via</i> layer-by-layer assembly of lipid-like surfactants and polyelectrolytes. Stratified supramolecular structures for (bio)electrochemical nanoarchitectonics. Soft Matter, 2018, 14, 1939-1952.	2.7	41
66	Hybrid Polymerâ^'Silicon Proton Conducting Membranes via a Pore-Filling Surface-Initiated Polymerization Approach. ACS Applied Materials & Interfaces, 2010, 2, 279-287.	8.0	40
67	Amine-Phosphate Specific Interactions within Nanochannels: Binding Behavior and Nanoconfinement Effects. Journal of Physical Chemistry C, 2019, 123, 28997-29007.	3.1	39
68	Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS Applied Materials & Interfaces, 2020, 12, 28148-28157.	8.0	39
69	Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions. Advanced Materials Interfaces, 2017, 4, 1700502.	3.7	38
70	Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria. Materials Science and Engineering C, 2017, 80, 677-687.	7.3	38
71	Layer-by-layer integration of conducting polymers and metal organic frameworks onto electrode surfaces: enhancement of the oxygen reduction reaction through electrocatalytic nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 893-900.	3.4	38
72	The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem, 2016, 17, 2718-2725.	2.1	37

OMAR AZZARONI

#	Article	IF	CITATIONS
73	Noncovalent Approach toward the Construction of Nanofluidic Diodes with pH-Reversible Rectifying Properties: Insights from Theory and Experiment. Journal of Physical Chemistry C, 2017, 121, 9070-9076.	3.1	37
74	Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochimica Acta, 2018, 283, 1178-1187.	5.2	36
75	Heterogeneous Catalytic Activity of Platinum Nanoparticles Hosted in Mesoporous Silica Thin Films Modified with Polyelectrolyte Brushes. ACS Applied Materials & Interfaces, 2013, 5, 8833-8840.	8.0	35
76	Layer-by-layer assembly of polymersomes and polyelectrolytes on planar surfaces and microsized colloidal particles. Journal of Colloid and Interface Science, 2014, 421, 132-140.	9.4	35
77	Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films. Colloids and Surfaces B: Biointerfaces, 2016, 145, 328-337.	5.0	34
78	Protonâ€Gated Rectification Regimes in Nanofluidic Diodes Switched by Chemical Effectors. Small, 2018, 14, e1703144.	10.0	34
79	Molecular Transport in Thin Thermoresponsive Poly(<i>N</i> -isopropylacrylamide) Brushes with Varying Grafting Density. Journal of Physical Chemistry C, 2012, 116, 13944-13953.	3.1	33
80	Metalâ€Organic Frameworks Help Conducting Polymers Optimize the Efficiency of the Oxygen Reduction Reaction in Neutral Solutions. Advanced Materials Interfaces, 2016, 3, 1600047.	3.7	33
81	Dual Monitoring of Surface Reactions in Real Time by Combined Surface-Plasmon Resonance and Field-Effect Transistor Interrogation. Journal of the American Chemical Society, 2020, 142, 11709-11716.	13.7	33
82	Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. Chemosensors, 2021, 9, 212.	3.6	33
83	Supramolecular assembly of glucose oxidase on concanavalin A—modified gold electrodes. Physical Chemistry Chemical Physics, 2010, 12, 8071.	2.8	31
84	Dangerous liaisons: anion-induced protonation in phosphate–polyamine interactions and their implications for the charge states of biologically relevant surfaces. Physical Chemistry Chemical Physics, 2017, 19, 8612-8620.	2.8	31
85	Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization. Langmuir, 2019, 35, 6279-6287.	3.5	31
86	Redox-Active Concanavalin A: Synthesis, Characterization, and Recognition-Driven Assembly of Interfacial Architectures for Bioelectronic Applications. Langmuir, 2010, 26, 13684-13696.	3.5	30
87	Electrochemical Sensing Platform Based on Polyelectrolyte–Surfactant Supramolecular Assemblies Incorporating Carbon Nanotubes. Analytical Chemistry, 2011, 83, 8011-8018.	6.5	29
88	Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin. Soft Matter, 2015, 11, 8879-8886.	2.7	28
89	Layer-by-layer assemblies of highly connected polyelectrolyte capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Applied Surface Science, 2017, 416, 24-32.	6.1	28
90	Hydrophobic interactions leading to a complex interplay between bioelectrocatalytic properties and multilayer meso-organization in layer-by-layer assemblies. Physical Chemistry Chemical Physics, 2014, 16. 20844-20855.	2.8	27

#	Article	IF	CITATIONS
91	Biofunctionalization of Grapheneâ€Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVIDâ€19 Diagnostics and Monitoring. Advanced Materials Interfaces, 2022, 9, 2102526.	3.7	26
92	Ionic self-assembly of electroactive biorecognizable units: electrical contacting of redox glycoenzymes made easy. Chemical Communications, 2012, 48, 10868.	4.1	25
93	Self-assembled peptide dendrigraft supraparticles with potential application in pH/enzyme-triggered multistage drug release. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110895.	5.0	25
94	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Interfaces, 2020, 12, 13598-13612.	8.0	25
95	PEDOT:Tosylateâ€Polyamineâ€Based Organic Electrochemical Transistors for Highâ€Performance Bioelectronics. Advanced Electronic Materials, 2021, 7, 2100059.	5.1	25
96	High Resistivity Lipid Bilayers Assembled on Polyelectrolyte Multilayer Cushions: An Impedance Study. Langmuir, 2016, 32, 6263-6271.	3.5	24
97	pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium) Tj ETQq1 1 0.78431 weak anionic groups. Physical Chemistry Chemical Physics, 2015, 17, 29935-29948.	4 rgBT /O 2.8	verlock 10 Tf 23
98	Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion. Advanced Materials Interfaces, 2017, 4, 1600126.	3.7	23
99	Thermosensitive Cationâ€Selective Mesochannels: PNIPAMâ€Capped Mesoporous Thin Films as Bioinspired Interfacial Architectures with Concerted Functions. Chemistry - A European Journal, 2017, 23, 14500-14506.	3.3	23
100	Polyamine Colloids Cross‣inked with Phosphate Ions: Towards Understanding the Solution Phase Behavior. ChemPhysChem, 2019, 20, 1044-1053.	2.1	23
101	Adsorption and Exchangeability of Fibronectin and Serum Albumin Protein Corona on Annealed Polyelectrolyte Multilayers and Their Consequences on Cell Adhesion. Advanced Materials Interfaces, 2019, 6, 1900008.	3.7	23
102	Polyanilines with Pendant Amino Groups as Electrochemically Active Copolymers at Neutral pH. ChemElectroChem, 2015, 2, 2011-2019.	3.4	22
103	Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly- <i>o</i> -aminophenol films. Nanoscale, 2020, 12, 6002-6011.	5.6	22
104	Effect of Gold Nanoparticles on the Structure and Electronâ€Transfer Characteristics of Glucose Oxidase Redox Polyelectrolyteâ€Surfactant Complexes. Chemistry - A European Journal, 2014, 20, 13366-13374.	3.3	21
105	Shedding Light on the Dark Corners of Metal–Organic Framework Thin Films: Growth and Structural Stability of ZIF-8 Layers Probed by Optical Waveguide Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 1100-1109.	2.5	21
106	Highly sensitive urine glucose detection with graphene field-effect transistors functionalized with electropolymerized nanofilms. Sensors & Diagnostics, 2022, 1, 139-148.	3.8	21
107	Amine-appended polyaniline as a water dispersible electroactive polyelectrolyte and its integration into functional self-assembled multilayers. Electrochimica Acta, 2016, 210, 435-444.	5.2	20
108	Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. Journal of Colloid and Interface Science, 2018, 518, 92-101.	9.4	20

#	Article	IF	CITATIONS
109	Electrochemical nanoarchitectonics through polyaminobenzylamine–dodecyl phosphate complexes: redox activity and mesoscopic organization in self-assembled nanofilms. Physical Chemistry Chemical Physics, 2018, 20, 7570-7578.	2.8	20
110	Continuous assembly of supramolecular polyamine–phosphate networks on surfaces: preparation and permeability properties of nanofilms. Soft Matter, 2019, 15, 1640-1650.	2.7	20
111	High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Nanoscale, 2020, 12, 18390-18399.	5.6	20
112	Synthesis and characterization of thermoresponsive ZIF-8@PNIPAm- <i>co</i> -MAA microgel composites with enhanced performance as an adsorption/release platform. RSC Advances, 2020, 10, 2453-2461.	3.6	20
113	Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity. Chemical Communications, 2015, 51, 14754-14757.	4.1	19
114	Metal–organic frameworks meet polymer brushes: enhanced crystalline film growth induced by macromolecular primers. Materials Chemistry Frontiers, 2017, 1, 2256-2260.	5.9	19
115	Thermo-responsive PNIPAm nanopillars displaying amplified responsiveness through the incorporation of nanoparticles. Nanoscale, 2018, 10, 1189-1195.	5.6	19
116	Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomaterials Science, 2018, 6, 2230-2247.	5.4	19
117	Layerâ€byâ€Layer Formation of Polyamineâ€Salt Aggregate/Polyelectrolyte Multilayers. Loading and Controlled Release of Probe Molecules from Selfâ€Assembled Supramolecular Networks. Macromolecular Chemistry and Physics, 2019, 220, 1900094.	2.2	19
118	Facile Glycoenzyme Wiring to Electrode Supports by Redoxâ€Active Biosupramolecular Glue. Chemistry - A European Journal, 2010, 16, 13970-13975.	3.3	18
119	Electron Transfer Properties of Dual Self-Assembled Architectures Based on Specific Recognition and Electrostatic Driving Forces: Its Application To Control Substrate Inhibition in Horseradish Peroxidase-Based Sensors. Analytical Chemistry, 2013, 85, 2414-2422.	6.5	18
120	Cysteamine-modified ZIF-8 colloidal building blocks: Direct assembly of nanoparticulate MOF films on gold surfaces via thiol chemistry. Materials Today Chemistry, 2018, 8, 29-35.	3.5	18
121	Antibacterial Layerâ€by‣ayer Films of Poly(acrylic acid)–Gentamicin Complexes with a Combined Burst and Sustainable Release of Gentamicin. Advanced Materials Interfaces, 2019, 6, 1901373.	3.7	18
122	Insulin Delivery from Glucoseâ€Responsive, Selfâ€Assembled, Polyamine Nanoparticles: Smart "Senseâ€andâ€Treat―Nanocarriers Made Easy. Chemistry - A European Journal, 2020, 26, 2456-2463.	3.3	18
123	Flexible conducting platforms based on PEDOT and graphite nanosheets for electrochemical biosensing applications. Applied Surface Science, 2020, 525, 146440.	6.1	18
124	Molecular transport properties of ZIF-8 thin films in aqueous environments: The critical role of intergrain mesoporosity as diffusional pathway. Microporous and Mesoporous Materials, 2016, 220, 253-257.	4.4	17
125	Modulation of Hydrophilic/Hydrophobic Character of Porous Environments in Metal–Organic Frameworks via Direct Polymer Capping Probed by NMR Diffusion Measurements. Journal of Physical Chemistry C, 2019, 123, 21076-21082.	3.1	17
126	MOF@PEDOT Composite Films for Impedimetric Pesticide Sensors. Global Challenges, 2020, 4, 1900076.	3.6	17

OMAR AZZARONI

#	Article	IF	CITATIONS
127	Layer-by-Layer Assembled Microgels Can Combine Conflicting Properties: Switchable Stiffness and Wettability without Affecting Permeability. Langmuir, 2018, 34, 3711-3719.	3.5	16
128	A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) microgels. Soft Matter, 2020, 16, 881-890.	2.7	16
129	Self-Assembled Redox Polyelectrolyte-Surfactant Complexes: Nanostructure and Electron Transfer Characteristics of Supramolecular Films with Built-In Electroactive Chemical Functions. Electrochimica Acta, 2014, 118, 124-129.	5.2	15
130	Early stages of ZIF-8 film growth: the enhancement effect of primers exposing sulfonate groups as surface-confined nucleation agents. RSC Advances, 2015, 5, 73958-73962.	3.6	15
131	Gramicidin ion channels in a lipid bilayer supported on polyelectrolyte multilayer films: an electrochemical impedance study. Soft Matter, 2017, 13, 8922-8929.	2.7	15
132	Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes. Langmuir, 2019, 35, 8038-8044.	3.5	15
133	Controlling dispersion, stability and polymer content on PDEGMA-functionalized core-brush silica colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 12-20.	4.7	15
134	PEDOT-polyamine composite films for bioelectrochemical platforms - flexible and easy to derivatize. Materials Science and Engineering C, 2020, 109, 110575.	7.3	15
135	Solvent Effects on the Structure–Property Relationship of Redox-Active Self-Assembled Nanoparticle–Polyelectrolyte–Surfactant Composite Thin Films: Implications for the Generation of Bioelectrocatalytic Signals in Enzyme-Containing Assemblies. ACS Applied Materials & Interfaces, 2017. 9. 1119-1128.	8.0	14
136	Tailored polyelectrolyte thin film multilayers to modulate cell adhesion. Biointerphases, 2017, 12, 04E403.	1.6	14
137	Surfactants as mesogenic agents in layer-by-layer assembled polyelectrolyte/surfactant multilayers: nanoarchitectured "soft―thin films displaying a tailored mesostructure. Physical Chemistry Chemical Physics, 2018, 20, 9298-9308.	2.8	14
138	Surface Engineering of Graphene through Heterobifunctional Supramolecular-Covalent Scaffolds for Rapid COVID-19 Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 43696-43707.	8.0	13
139	Nanoarchitectonics, now. Molecular Systems Design and Engineering, 2019, 4, 9-10.	3.4	12
140	Lectin-Recognizable MOF Glyconanoparticles: Supramolecular Glycosylation of ZIF-8 Nanocrystals by Sugar-Based Surfactants. ACS Omega, 2019, 4, 842-848.	3.5	12
141	Enzyme Multilayers on Graphene-Based FETs for Biosensing Applications. Methods in Enzymology, 2018, 609, 23-46.	1.0	11
142	Multitasking polyamine/ferrioxalate nano-sized assemblies: thermo-, photo-, and redox-responsive soft materials made easy. Chemical Communications, 2019, 55, 14653-14656.	4.1	11
143	Growth of ZIFâ€8 MOF Films with Tunable Porosity by using Poly (1â€vinylimidazole) Brushes as 3D Primers. Chemistry - A European Journal, 2020, 26, 12388-12396.	3.3	11
144	Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. Nanoscale, 2021, 13, 11232-11241.	5.6	11

#	Article	IF	CITATIONS
145	PEDOT-Based Stackable Paper Electrodes for Metal-Free Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9283-9293.	5.1	11
146	Formation of redox-active self-assembled polyelectrolyte–surfactant complexes integrating glucose oxidase on electrodes: Influence of the self-assembly solvent on the signal generation. Bioelectrochemistry, 2015, 105, 117-122.	4.6	10
147	The effect of ionic strength and phosphate ions on the construction of redox polyelectrolyte–enzyme self-assemblies. Physical Chemistry Chemical Physics, 2019, 21, 22947-22954.	2.8	10
148	Light-Induced Polymer Response through Thermoplasmonics Transduction in Highly Monodisperse Core-Shell-Brush Nanosystems. Langmuir, 2020, 36, 1965-1974.	3.5	10
149	Enzymes hosted in redox-active ionically cross-linked polyelectrolyte networks enable more efficient biofuel cells. Soft Matter, 2021, 17, 5240-5247.	2.7	10
150	Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials. Talanta, 2009, 78, 1102-1106.	5.5	9
151	Supramacromolecular organization of gold nanocrystals capped with amphiphilic hyperbranched polyethyleneimine. Journal of Colloid and Interface Science, 2013, 397, 206-209.	9.4	9
152	Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature. Journal of Physical Chemistry C, 2018, 122, 6669-6677.	3.1	9
153	Powering Up the Oxygen Reduction Reaction through the Integration of O ₂ -Adsorbing Metal–Organic Frameworks on Nanocomposite Electrodes. ACS Applied Energy Materials, 0, , .	5.1	9
154	Redox-active polyamine-salt aggregates as multistimuli-responsive soft nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 7440-7450.	2.8	9
155	Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Analytical and Bioanalytical Chemistry, 2020, 412, 3299-3315.	3.7	9
156	Reactivity Ratios and Surface Properties of Confined and Bulk ATRP Copolymerization of Butyl Methacrylate and 2-Hydroxyethyl Acrylate. ACS Applied Polymer Materials, 2021, 3, 640-650.	4.4	9
157	Mesoporous thin films on graphene FETs: nanofiltered, amplified and extended field-effect sensing. Nanoscale, 2021, 13, 19098-19108.	5.6	9
158	Polyelectrolyte Capping As Straightforward Approach toward Manipulation of Diffusive Transport in MOF Films. Langmuir, 2018, 34, 425-431.	3.5	8
159	Use of Confinement Effects in Mesoporous Materials to Build Tailored Nanoarchitectures. , 2019, , 331-348.		8
160	Self-Assembled Mesoporous Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals Bearing Thiol Groups for Separations Technologies. ACS Applied Nano Materials, 2020, 3, 11266-11273.	5.0	8
161	Mass and charge transport in highly mesostructured polyelectrolyte/electroactive-surfactant multilayer films. Journal of Colloid and Interface Science, 2021, 581, 595-607.	9.4	8
162	Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction. Materials Advances, 2021, 2, 7731-7740.	5.4	8

#	Article	IF	CITATIONS
163	On the supramacromolecular structure of core–shell amphiphilic macromolecules derived from hyperbranched polyethyleneimine. Journal of Colloid and Interface Science, 2014, 436, 243-250.	9.4	7
164	Mesostructured Electroactive Thin Films Through Layerâ€by‣ayer Assembly of Redox Surfactants and Polyelectrolytes. ChemPlusChem, 2020, 85, 1616-1622.	2.8	7
165	A Patterned Butyl Methacrylate-co-2-Hydroxyethyl Acrylate Copolymer with Softening Surface and Swelling Capacity. Polymers, 2019, 11, 290.	4.5	5
166	Post-synthetic modification and chemical modulation of the ZIF-8 MOF using 3-mercaptopropionic acid (MPA): a multi-technique study on thermodynamic and kinetic aspects. Molecular Systems Design and Engineering, 2022, 7, 101-111.	3.4	5
167	Mesophase Transformation in Amphiphilic Hyperbranched Polymers Induced by Transition Metal Ion Complexation. Creating Well-Defined Metallo-Supramolecular Assemblies from "lll-Defined―Building Blocks. ACS Macro Letters, 2015, 4, 94-100.	4.8	4
168	Shelter for Biologically Relevant Molecules: Photoprotection and Enhanced Thermal Stability of Folic Acid Loaded in a ZIF-8 MOF Porous Host. Industrial & Engineering Chemistry Research, 2020, 59, 22155-22162.	3.7	3
169	Impact of Chemical Primers on the Growth, Structure, and Functional Properties of ZIF-8 Films. Journal of Physical Chemistry C, 2022, 126, 6724-6735.	3.1	3
170	Cell Adhesion: Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion (Adv. Mater. Interfaces 1/2017). Advanced Materials Interfaces, 2017, 4, .	3.7	1
171	Introduction to celebrating Latin American talent in chemistry. RSC Advances, 2021, 11, 40216-40219.	3.6	1
172	Concepts for Designing Tailored Thin Film Surfaces with Potential Biological Applications. , 2020, , .		0