
Carlo Lucarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836396/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Steam reforming of clean biogas over Rh and Ru open-cell metallic foam structured catalysts. Catalysis Today, 2022, 383, 74-83.	4.4	11
2	Boosting the guerbet reaction: A cooperative catalytic system for the efficient bio-ethanol refinery to second-generation biofuels. Journal of Catalysis, 2022, 405, 47-59.	6.2	19
3	Catalytic Upgrading of Clean Biogas to Synthesis Gas. Catalysts, 2022, 12, 109.	3.5	7
4	Evaluation of the Catalytic Activity of Metal Phosphates and Related Oxides in the Ketonization of Propionic Acid. Sustainable Chemistry, 2022, 3, 58-75.	4.7	8
5	Effect of Fe and La on the Performance of NiMgAl HT-Derived Catalysts in the Methanation of CO ₂ and Biogas. Industrial & Engineering Chemistry Research, 2022, 61, 10511-10521.	3.7	9
6	Biogas to Syngas through the Combined Steam/Dry Reforming Process: An Environmental Impact Assessment. Energy & Fuels, 2021, 35, 4224-4236.	5.1	18
7	Bimetallic Co–M (M = Cu, Ag, and Au) Carbonyl Complexes Supported by <i>N</i> -Heterocyclic Carbene Ligands: Synthesis, Structures, Computational Investigation, and Catalysis for Ammonia Borane Dehydrogenation. Organometallics, 2021, 40, 2724-2735.	2.3	10
8	Urea and Polyurea Production: An Innovative Solvent- and Catalyst-Free Approach through Catechol Carbonate. ACS Sustainable Chemistry and Engineering, 2020, 8, 15640-15650.	6.7	16
9	Combined Reforming of Clean Biogas over Nanosized Ni–Rh Bimetallic Clusters. Catalysts, 2020, 10, 1345.	3.5	6
10	The competition between dehydrogenation and dehydration reactions for primary and secondary alcohols over gallia: unravelling the effects of molecular and electronic structure <i>via</i> a two-pronged theoretical/experimental approach. Catalysis Science and Technology, 2020, 10, 3433-3449.	4.1	10
11	Tandem Hydrogenation/Hydrogenolysis of Furfural to 2-Methylfuran over a Fe/Mg/O Catalyst: Structure–Activity Relationship. Catalysts, 2019, 9, 895.	3.5	18
12	A cascade mechanism for a simple reaction: The gas-phase methylation of phenol with methanol. Journal of Catalysis, 2019, 370, 447-460.	6.2	23
13	Ni-based catalysts to produce synthesis gas by combined reforming of clean biogas. Applied Catalysis A: General, 2019, 582, 117087.	4.3	25
14	Hydrogen Transfer Activation via Stabilization of Coordinatively Vacant Sites: Tuning Long-Range I€-System Electronic Interaction between Ru(0) and NHC Pendants. Organometallics, 2019, 38, 1041-1051.	2.3	14
15	Ethanol aerobic and anaerobic oxidation with FeVO4 and V2O5 catalysts. Applied Catalysis A: General, 2019, 570, 139-147.	4.3	16
16	Catalytic Biorefining of Ethanol from Wine Waste to Butanol and Higher Alcohols: Modeling the Life Cycle Assessment and Process Design. ACS Sustainable Chemistry and Engineering, 2019, 7, 224-237.	6.7	35
17	Novel Cu-Zn-Al catalysts obtained from hydrotalcite-type precursors for middle-temperature water-gas shift applications. Applied Clay Science, 2018, 155, 103-110.	5.2	18
18	Mg/Ga mixed-oxide catalysts for phenol methylation: Outstanding performance in 2,4,6-trimethylphenol synthesis with co-feeding of water. Applied Catalysis A: General, 2018, 552, 86-97.	4.3	22

CARLO LUCARELLI

#	Article	IF	CITATIONS
19	Exploiting H-transfer as a tool for the catalytic reduction of bio-based building blocks: the gas-phase production of 2-methylfurfural using a FeVO ₄ catalyst. Green Chemistry, 2017, 19, 4412-4422.	9.0	35
20	Efficient and ecofriendly route for the solvent-free synthesis of piperonal and aromatic aldehydes using Au/CeO2 catalyst. Applied Catalysis B: Environmental, 2017, 203, 314-323.	20.2	18
21	Hard-template preparation of Au/CeO 2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Microporous and Mesoporous Materials, 2016, 226, 466-475.	4.4	54
22	Insights into the Reactivity of Thiophene: Heterogeneous Alkylation. Topics in Catalysis, 2016, 59, 1249-1256.	2.8	0
23	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	3.1	20
24	Novel thiotolerant catalysts for the on-board partial dehydrogenation of jet fuels. RSC Advances, 2016, 6, 48962-48972.	3.6	3
25	Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction. Applied Catalysis B: Environmental, 2015, 163, 520-530.	20.2	177
26	Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Applied Catalysis A: General, 2015, 504, 408-419.	4.3	90
27	Catalyst deactivation in on-board H2 production by fuel dehydrogenation. International Journal of Hydrogen Energy, 2014, 39, 1336-1349.	7.1	8
28	FT-IR Investigation of Methoxy Substituted Benzenes Adsorbed on Solid Acid Catalysts. Journal of Physical Chemistry C, 2012, 116, 21308-21317.	3.1	10
29	Examples of heterogeneous catalytic processes for fine chemistry. Green Chemistry, 2011, 13, 1941.	9.0	55
30	On-board H2 generation by catalytic dehydrogenation of hydrocarbon mixtures or fuels. Catalysis Today, 2011, 175, 504-508.	4.4	20
31	Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates. Applied Catalysis A: General, 2011, 391, 118-124.	4.3	47
32	Pt–Sn/γ-Al2O3 and Pt–Sn–Na/γ-Al2O3 catalysts for hydrogen production by dehydrogenation of Jet A-1 fuel: Characterisation and preliminary activity tests. International Journal of Hydrogen Energy, 2011, 36, 5972-5982.	7.1	24
33	Total oxidation of volatile organic compounds on Au/FeOx catalysts supported on mesoporous SBA-15 silica. Applied Catalysis A: General, 2011, 400, 54-60.	4.3	38
34	The control of catalytic performance of rutile-type Sn/V/Nb/Sb mixed oxides, catalysts for propane ammoxidation to acrylonitrile. Catalysis Today, 2008, 138, 97-103.	4.4	17
35	Sol–gel synthesis and characterization of transition metal based mixed oxides and their application as catalysts in selective oxidation of propane. Applied Catalysis A: General, 2007, 325, 244-250.	4.3	16
36	Sol–Gel synthesis and characterization of Nb-Mo and Nb-Mo-V mixed oxides as potential catalysts for the selective oxidation of propane. Studies in Surface Science and Catalysis, 2006, , 841-848.	1.5	0

#	Article	IF	CITATIONS
37	The oxygen-assisted transformation of propane to COx/H2 through combined oxidation and WGS reactions catalyzed by vanadium oxide-based catalysts. Catalysis Today, 2006, 116, 313-323.	4.4	29
38	Vanadium and niobium mixed-oxide catalysts obtained via sol-gel: preparation and catalytic behaviour in oxidative dehydrogenation of propane. Studies in Surface Science and Catalysis, 2005, 155, 427-439.	1.5	4
39	Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Physical Chemistry Chemical Physics, 2004, 6, 1842-1847.	2.8	56
40	Effect of exchange procedure and crystal size on high silica MFI zeolite as catalyst for vapor phase Beckmann rearrangement. Studies in Surface Science and Catalysis, 2004, , 2823-2830.	1.5	2