
Magdalena Wdowin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4836256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 2015, 22, 9464-9474.	5.3	264
2	The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 2014, 16, 1217-1223.	4.1	183
3	Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 2014, 186, 5721-5729.	2.7	178
4	Experimental study of mercury removal from exhaust gases. Fuel, 2014, 128, 451-457.	6.4	88
5	Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 2017, 22, 81-90.	6.8	80
6	Synthetic zeolites as potential sorbents of mercury from wastewater occurring during wet FGD processes of flue gas. Journal of Cleaner Production, 2018, 172, 2636-2645.	9.3	75
7	Utilization of sewage sludge in the manufacture of lightweight aggregate. Environmental Monitoring and Assessment, 2016, 188, 10.	2.7	66
8	SEM Investigation of Microstructures in Hydration Products of Portland Cement. Springer Proceedings in Physics, 2015, , 105-112.	0.2	55
9	Synthesis of faujasite (FAU) and tschernichite (LTA) type zeolites as a potential direction of the development of lime Class C fly ash. International Journal of Mineral Processing, 2017, 166, 69-78.	2.6	46
10	Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions. Environmental Earth Sciences, 2017, 76, 1.	2.7	39
11	Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay Minerals, 2015, 50, 31-40.	0.6	38
12	Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2–brine–rock interactions. International Journal of Coal Geology, 2014, 130, 79-88.	5.0	37
13	Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application. Renewable Energy, 2020, 155, 1264-1271.	8.9	35
14	Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types. International Journal of Coal Science and Technology, 2021, 8, 291-311.	6.0	30
15	Characteristics and distribution of analyzed metals in soil profiles in the vicinity of a postflotation waste site in the Bukowno region, Poland. Environmental Monitoring and Assessment, 2013, 185, 8157-8168.	2.7	26
16	The contents of the potentially harmful elements in the arable soils of southern Poland, with the assessment of ecological and health risks: a case study. Environmental Geochemistry and Health, 2020, 42, 419-442.	3.4	25
17	From coal ashes to solid sorbents for hydrogen storage. Journal of Cleaner Production, 2020, 270, 122355.	9.3	25
18	Petrophysical examination of CO2-brine-rock interactions—results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir (central Poland) for CO2 storage. Environmental Monitoring and Assessment, 2015, 187, 4215.	2.7	24

#	Article	IF	CITATIONS
19	Petrophysical and Mineralogical Research on the Influence of CO ₂ Injection on Mesozoic Reservoir and Caprocks from the Polish Lowlands. Oil and Gas Science and Technology, 2011, 66, 137-150.	1.4	20
20	Modeling gas–rock–water interactions in carbon dioxide storage capacity assessment: a case study of Jurassic sandstones in Poland. International Journal of Environmental Science and Technology, 2015, 12, 2493-2502.	3.5	18
21	Supplementary Studies of Textural and Mineralogical Changes in Reservoir and Caprocks from Selected Potential Sites Suitable for Underground CO2 Storage. Arabian Journal for Science and Engineering, 2014, 39, 295-309.	1.1	15
22	Impact of Fly Ash Fractionation on the Zeolitization Process. Materials, 2020, 13, 1035.	2.9	15
23	Results of mineralogic-petrographical studies and numerical modeling of water-rock- CO2 system of the potential storage site within the Belchatow area (Poland). Energy Procedia, 2011, 4, 3450-3456.	1.8	11
24	Analysis of solid sorbents for control and removal processes for elemental mercury from gas streams: a review. International Journal of Coal Science and Technology, 2021, 8, 23-46.	6.0	10
25	Preparation of coal fly ash derived metal organic frameworks and their carbon derivatives. Materials Today Communications, 2021, 27, 102433.	1.9	10
26	Changes in the Textural Parameters of Fly Ash-Derived Na-P1 Zeolite During Compaction Processes. Mineralogia, 2017, 48, 3-22.	0.8	7
27	An analysis of the chemistry, mineralogy and texture of waste dolomite powder used to identify its potential application in industry. Geology Geophysics & Environment, 2015, 41, 343.	1.0	7
28	Economic and environmental assessment of the use of electric cars in Poland. Polityka Energetyczna, 2021, 24, 153-168.	1.3	6
29	Charakterystyka mineralogiczno-chemiczna i teksturalna odpadów poflotacyjnych z przemysÅ,u Zn-Pb pod kątem dalszych rozważań wykorzystania ich jako sorbentów. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 2012, 28, 55-69.	0.2	5
30	Petrographic-mineralogical and textural changes in reservoir and sealing rocks (Zaosie anticline) as a result of a long-term experiment in CO2-brine-rock interactions. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 2013, 29, .	0.2	3
31	Statistical study and physicochemical characterization of particulate matter in the context of Kraków, Poland. Atmospheric Pollution Research, 2020, 11, 520-530.	3.8	3
32	The Use of Scanning Electron Microscopy to Identify Zeolite Minerals. Springer Proceedings in Physics, 2014, , 45-50.	0.2	2
33	Analysis of selected mineral and waste sorbents for the capture of elemental mercury from exhaust gases. Mineralogia, 2020, 51, 17-35.	0.8	2
34	Surowiec kaolinowy jako potencjalny materiaÅ, do syntezy zeolitu typu A. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 2015, 31, 45-58.	0.2	1
35	Fly Ash Derived Zeolites in the Removal of Toxic Compounds. , 0, , .		1
36	Economic profitability analysis of the use of zeolite sorbents in mercury removal technologies. Polityka Energetyczna, 2020, 23, 103-118.	1.3	1

#	Article	IF	CITATIONS
37	Environmental analysis of novel sorbents for mercury sorption. Polityka Energetyczna, 2020, 23, 119-134.	1.3	1
38	SEM-EDS Observation of Structure Changes in Synthetic Zeolites Modified for CO2 Capture Needs. Springer Proceedings in Physics, 2015, , 97-103.	0.2	0