Zeynep Talip

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4835338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-conventional radionuclides: The pursuit for perfection. , 2022, , 133-142.		1
2	Precise activity measurements of medical radionuclides using an ionization chamber: a case study with Terbium-161. EJNMMI Physics, 2022, 9, 19.	2.7	5
3	Cross section measurement of terbium radioisotopes for an optimized 155Tb production with an 18 MeV medical PET cyclotron. Applied Radiation and Isotopes, 2022, 184, 110175.	1.5	18
4	High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154. Scientific Reports, 2022, 12, .	3.3	1
5	Chelation of Theranostic Copper Radioisotopes with S-Rich Macrocycles: From Radiolabelling of Copper-64 to In Vivo Investigation. Molecules, 2022, 27, 4158.	3.8	5
6	In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Molecular Imaging and Biology, 2021, 23, 196-207.	2.6	12
7	Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Frontiers in Medicine, 2021, 8, 643175.	2.6	11
8	Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics, 2021, 13, 536.	4.5	17
9	CERN-MEDICIS: A Review Since Commissioning in 2017. Frontiers in Medicine, 2021, 8, 693682.	2.6	22
10	Radiochemical Determination of Long-Lived Radionuclides in Proton-Irradiated Heavy Metal Targets: Part II Tungsten. Analytical Chemistry, 2021, 93, 10798-10806.	6.5	3
11	Determination of the gamma and X-ray emission intensities of terbium-161. Applied Radiation and Isotopes, 2021, 174, 109770.	1.5	3
12	Determination of the gamma and X-ray emission intensities of erbium-169. Applied Radiation and Isotopes, 2021, 176, 109823.	1.5	4
13	Ytterbium-175 half-life determination. Applied Radiation and Isotopes, 2021, 176, 109893.	1.5	3
14	Efficient Production of High Specific Activity Thulium-167 at Paul Scherrer Institute and CERN-MEDICIS. Frontiers in Medicine, 2021, 8, 712374.	2.6	11
15	Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules, 2020, 25, 4706.	3.8	38
16	Activity standardisation of 161Tb. Applied Radiation and Isotopes, 2020, 166, 109411.	1.5	5
17	Determination of 161Tb half-life by three measurement methods. Applied Radiation and Isotopes, 2020, 159, 109085.	1.5	25
18	A Step-by-Step Guide for the Novel Radiometal Production for Medical Applications: Case Studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules, 2020, 25, 966.	3.8	36

ZEYNEP TALIP

#	Article	IF	CITATIONS
19	Separation and recovery of exotic radiolanthanides from irradiated tantalum targets for half-life measurements. PLoS ONE, 2020, 15, e0235711.	2.5	7
20	Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 12.	3.9	56
21	Implementation of a new separation method to produce qualitatively improved <scp>⁶⁴Cu</scp> . Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 460-470.	1.0	14
22	Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA. Journal of Nuclear Materials, 2018, 499, 88-97.	2.7	17
23	Raman microspectroscopic studies of unirradiated homogeneous (U _{0.76} Pu _{0.24})O _{2+x} : the effects of Pu content, nonâ€stoichiometry, selfâ€radiation damage and secondary phases. Journal of Raman Spectroscopy, 2017, 48, 765-772.	2.5	19
24	Analysis of the ¹⁴⁸ Gd and ¹⁵⁴ Dy Content in Proton-Irradiated Lead Targets. Analytical Chemistry, 2017, 89, 6861-6869.	6.5	7
25	Radiochemical Determination of Long-Lived Radionuclides in Proton-Irradiated Heavy-Metal Targets: Part l—Tantalum. Analytical Chemistry, 2017, 89, 13541-13549.	6.5	6
26	TEM study of alpha-damaged plutonium and americium dioxides. Journal of Materials Research, 2015, 30, 1544-1554.	2.6	20
27	Raman and Xâ€ray Studies of Uranium–Lanthanumâ€Mixed Oxides Before and After Air Oxidation. Journal of the American Ceramic Society, 2015, 98, 2278-2285.	3.8	54
28	A mass spectrometry method for quantitative and kinetic analysis of gas release from nuclear materials and its application to helium desorption from UO ₂ and fission gas release from irradiated fuel. Journal of Nuclear Science and Technology, 2014, 51, 700-711.	1.3	10
29	Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond. Journal of Nuclear Materials, 2014, 451, 198-206.	2.7	60
30	Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy, 2008, 90, 13-18.	4.3	166