Chun-Sen Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4835310/chun-sen-liu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 14,905 113 239 h-index g-index citations papers 18,282 248 7.51 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
239	Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coordination Chemistry Reviews, 2013, 257, 1282-1305	23.2	648
238	Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1602733	21.8	582
237	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. <i>Advanced Energy Materials</i> , 2018 , 8, 1703259	21.8	479
236	Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. <i>Chemical Society Reviews</i> , 2020 , 49, 301-331	58.5	416
235	MetalBrganic frameworks as a platform for clean energy applications. <i>EnergyChem</i> , 2020 , 2, 100027	36.9	377
234	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8155-8186	13	317
233	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. <i>Energy and Environmental Science</i> , 2013 , 6, 3619	35.4	307
232	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 19078-19085	13	305
231	Ultrathin NickelCobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solid-State Electrolyte. <i>Advanced Functional Materials</i> , 2017 , 27, 1605784	15.6	297
230	One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. <i>Nano Energy</i> , 2017 , 35, 138-145	17.1	262
229	Nitrogen-Doped Cobalt Oxide Nanostructures Derived from CobaltAlanine Complexes for High-Performance Oxygen Evolution Reactions. <i>Advanced Functional Materials</i> , 2018 , 28, 1800886	15.6	239
228	Vanadium based materials as electrode materials for high performance supercapacitors. <i>Journal of Power Sources</i> , 2016 , 329, 148-169	8.9	216
227	Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9613-9619	13	215
226	Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2311-2317	7.1	213
225	Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive COBorption selectivity. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10906-9	16.4	213
224	Semiconductive Copper(I)-Organic Frameworks for Efficient Light-Driven Hydrogen Generation Without Additional Photosensitizers and Cocatalysts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14637-14641	16.4	201
223	Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. <i>Scientific Reports</i> , 2014 , 4, 3577	4.9	190

222	MetalBrganic framework composites and their electrochemical applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7301-7327	13	186
221	Ultrathin two-dimensional cobalt b rganic framework nanosheets for high-performance electrocatalytic oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22070-22076	13	182
220	Nanostructured graphene-based materials for flexible energy storage. <i>Energy Storage Materials</i> , 2017 , 9, 150-169	19.4	177
219	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15889-15896	13	161
218	Ni and NiO Nanoparticles Decorated Metal-Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 22342-22349	9.5	154
217	Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009, 1076-8	5.8	144
216	Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. <i>Chemical Communications</i> , 2009 , 7542-4	5.8	138
215	Applications of Metal-Organic-Framework-Derived Carbon Materials. <i>Advanced Materials</i> , 2019 , 31, e18	30 <u>4</u> 740	136
214	Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors. <i>Small</i> , 2018 , 14, e1801815	11	128
213	Syntheses and Energy Storage Applications of MxSy (M = Cu, Ag, Au) and Their Composites: Rechargeable Batteries and Supercapacitors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703949	15.6	126
212	Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. <i>Dalton Transactions</i> , 2012 , 41, 13284-91	4.3	118
211	Noble metal-based materials in high-performance supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 33-51	6.8	117
210	An anionic Na(i)-organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid. <i>Chemical Communications</i> , 2017 , 53, 10668-10671	5.8	116
209	Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5234-5239	7-3	114
208	One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Advances, 2014 , 4, 699	98 _{3.7}	113
207	Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 358-	-364 ⁸	106
206	Core-shell materials for advanced batteries. <i>Chemical Engineering Journal</i> , 2019 , 355, 208-237	14.7	106
205	Pore modulation of zirconium-organic frameworks for high-efficiency detection of trace proteins. <i>Chemical Communications</i> , 2017 , 53, 3941-3944	5.8	102

204	FeO -Based Materials for Electrochemical Energy Storage. <i>Advanced Science</i> , 2018 , 5, 1700986	13.6	101
203	Facile one-pot generation of metal oxide/hydroxide@metal-organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. <i>Chemical Communications</i> , 2019 , 55, 10904-10907	5.8	97
202	Dual-Emitting Dye@MOF Composite as a Self-Calibrating Sensor for 2,4,6-Trinitrophenol. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 2,4671-24677	9.5	95
201	Two-Dimensional Zirconium-Based Metal-Organic Framework Nanosheet Composites Embedded with Au Nanoclusters: A Highly Sensitive Electrochemical Aptasensor toward Detecting Cocaine. <i>ACS Sensors</i> , 2017 , 2, 998-1005	9.2	94
200	A review of electrochemical energy storage behaviors based on pristine metal®rganic frameworks and their composites. <i>Coordination Chemistry Reviews</i> , 2020 , 416, 213341	23.2	94
199	Polypyrrole coated hollow metalBrganic framework composites for lithiumBulfur batteries. Journal of Materials Chemistry A, 2019 , 7, 19465-19470	13	94
198	Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation. <i>Chemical Communications</i> , 2015 , 51, 2768-81	5.8	92
197	Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2019 , 373, 1319-1328	14.7	91
196	Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. <i>Nanoscale</i> , 2010 , 2, 920-2	7.7	91
195	Applications of Tin Sulfide-Based Materials in Lithium-Ion Batteries and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001298	15.6	90
194	A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15969-15974	13	89
193	Few-layered CoHPO4 []3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. <i>Nanoscale</i> , 2013 , 5, 5752-7	7.7	89
192	Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. <i>Biosensors and Bioelectronics</i> , 2017 , 91, 804-810	11.8	82
191	Development and application of self-healing materials in smart batteries and supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 380, 122565	14.7	81
190	Ultrathin nanosheet-assembled [Ni(OH)(PTA)(HO)]IPHO hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. <i>Nanoscale</i> , 2018 , 10, 13270-13276	7.7	80
189	Porous nanocubic Mn3O4-Co3O4 composites and their application as electrochemical supercapacitors. <i>Dalton Transactions</i> , 2012 , 41, 10175-81	4.3	80
188	Non-noble metal-transition metal oxide materials for electrochemical energy storage. <i>Energy Storage Materials</i> , 2018 , 15, 171-201	19.4	78
187	Facile Synthesis of Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 2360-7	2367	77

(2018-2016)

186	Moisture-Stable Zn(II) Metal-Organic Framework as a Multifunctional Platform for Highly Efficient CO2 Capture and Nitro Pollutant Vapor Detection. <i>ACS Applied Materials & Design Section</i> , 8, 180	43-50	76
185	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. <i>Chemical Engineering Journal</i> , 2019 , 364, 226-243	14.7	75
184	Dual-Functionalized Mixed Keggin- and Lindqvist-Type Cu-Based POM@MOF for Visible-Light-Driven H and O Evolution. <i>Inorganic Chemistry</i> , 2019 , 58, 7229-7235	5.1	75
183	Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. <i>Chemistry - A European Journal</i> , 2020 , 26, 6402-6422	4.8	75
182	Advanced batteries based on manganese dioxide and its composites. <i>Energy Storage Materials</i> , 2018 , 12, 284-309	19.4	75
181	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. <i>Nano Letters</i> , 2021 , 21, 3016-3025	11.5	75
180	Smart Yolk/Shell [email[protected] Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033	8.3	72
179	Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. <i>Nanoscale</i> , 2013 , 5, 503-7	7.7	72
178	Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. <i>RSC Advances</i> , 2012 , 2, 2257	3.7	72
177	A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. <i>Chemical Communications</i> , 2019 , 55, 7922-7925	5.8	71
176	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 791-797	6.8	70
175	Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. <i>Nanoscale</i> , 2014 , 6, 10989-94	7.7	70
174	Synthesis of copper(II) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12609		70
173	Exposing {001} Crystal Plane on Hexagonal Ni-MOF with Surface-Grown Cross-Linked Mesh-Structures for Electrochemical Energy Storage. <i>Small</i> , 2019 , 15, e1902463	11	69
172	A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks. <i>Chemical Communications</i> , 2016 , 52, 8413-6	5.8	69
171	A water-stable Eu-based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants. <i>Dalton Transactions</i> , 2019 , 48, 1843-1849	4.3	68
170	Ultrathin Cu-MOF@EMnO2 nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17329-17336	13	66
169	Dual anode materials for lithium- and sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4236-4259	13	65

168	Amorphous Intermediate Derivative from ZIF-67 and Its Outstanding Electrocatalytic Activity. <i>Small</i> , 2020 , 16, e1904252	11	65
167	2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. <i>2D Materials</i> , 2017 , 4, 025098	5.9	62
166	The application of CeO2-based materials in electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17675-17702	13	62
165	Iron oxide@mesoporous carbon architectures derived from an Fe(II)-based metal organic framework for highly sensitive oxytetracycline determination. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19378-19389	13	61
164	Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage. <i>Small</i> , 2018 , 14, e1703811	11	57
163	A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. <i>Mikrochimica Acta</i> , 2013 , 180, 821-827	5.8	57
162	Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. <i>CrystEngComm</i> , 2010 , 12, 406-412	3.3	57
161	Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. <i>Scientific Reports</i> , 2014 , 4, 5687	4.9	56
160	Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. <i>Sensors and Actuators B: Chemical</i> , 2018 , 265, 104-109	8.5	56
159	Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties. <i>RSC Advances</i> , 2012 , 2, 5930	3.7	56
158	Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. <i>Chemical Communications</i> , 2010 , 46, 2010-2	5.8	56
157	Pore modulation of metalorganic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4861-4867	13	55
156	Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. <i>Chemical Engineering Journal</i> , 2018 , 351, 441-461	14.7	55
155	A new strategy for the controllable growth of MOF@PBA architectures. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17266-17271	13	54
154	Aptamer-Embedded Zirconium-Based Metal-Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. <i>ACS Sensors</i> , 2017 , 2, 982-989	9.2	54
153	Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1731-7	4.5	54
152	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22123-22147	13	53
151	Ligand Symmetry Modulation for Designing a Mesoporous Metal-Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. <i>Chemistry - A European Journal</i> , 2015 , 21, 9713-9	4.8	53

150	Cu superstructures fabricated using tree leaves and CuMnO2 superstructures for high performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5053	13	53	
149	Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for High-Performance Supercapacitors. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400377	4.6	51	
148	Nickel Phosphite Superstructures Assembled by Nanotubes: Original Application for Effective Electrode Materials of Supercapacitors. <i>ChemPlusChem</i> , 2013 , 78, 546-553	2.8	51	
147	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. <i>Journal of Hazardous Materials</i> , 2020 , 395, 122692	12.8	51	
146	CoreShell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2514-2520	6.8	50	
145	Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 1049-1056	2.6	50	
144	A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. <i>Advanced Functional Materials</i> , 2021 , 31, 2104231	15.6	50	
143	Ligand Symmetry Modulation for Designing Mixed-Ligand Metal-Organic Frameworks: Gas Sorption and Luminescence Sensing Properties. <i>Inorganic Chemistry</i> , 2016 , 55, 8892-7	5.1	50	
142	Stable Layered Semiconductive Cu(I)-Organic Framework for Efficient Visible-Light-Driven Cr(VI) Reduction and H Evolution. <i>Inorganic Chemistry</i> , 2018 , 57, 7975-7981	5.1	49	
141	Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithiumBulfur batteries. <i>Rare Metals</i> , 2020 , 39, 1099-1106	5.5	48	
140	Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. <i>Scientific Reports</i> , 2015 , 5, 8536	4.9	46	
139	Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14391-14418	13	45	
138	Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. Journal of Solid State Electrochemistry, 2013 , 17, 1383-1391	2.6	45	
137	Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. <i>Chemical Engineering Journal</i> , 2020 , 401, 126005	14.7	44	
136	One Dimensional Silver-based Nanomaterials: Preparations and Electrochemical Applications. <i>Small</i> , 2017 , 13, 1701091	11	42	
135	Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. <i>CrystEngComm</i> , 2013 , 15, 5950	3.3	42	
134	Porous pyrrhotite FeS nanowire/SiO/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 801-807	9.3	42	
133	Mesoporous 3D ZnONiO architectures for high-performance supercapacitor electrode materials. <i>CrystEngComm</i> , 2014 , 16, 4169-4175	3.3	41	

132	Design of hollow carbon-based materials derived from metalorganic frameworks for electrocatalysis and electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3880-39	173	41
131	NH4CoPO4IH2O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. <i>RSC Advances</i> , 2014 , 4, 340-347	3.7	40
130	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2021 , 439, 213915	23.2	40
129	Hierarchically Porous NaCoPO4to3O4 Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 831-839	3.1	39
128	Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. <i>Chinese Chemical Letters</i> , 2020 , 31, 2280-2286	8.1	38
127	Nitrogen-, phosphorus-doped carbonDarbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. <i>Rare Metals</i> , 2020 , 39, 680-687	5.5	37
126	Microporous Cobalt(II)-Organic Framework with Open O-Donor Sites for Effective CH Storage and CH/CO Separation at Room Temperature. <i>Inorganic Chemistry</i> , 2017 , 56, 14767-14770	5.1	37
125	Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. <i>Chemical Communications</i> , 2011 , 47, 11772-4	5.8	37
124	Synthesis of Quasi-Ce-MOFElectrocatalysts for Enhanced Urea Oxidation Reaction Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8675-8680	8.3	36
123	The Research Development of Quantum Dots in Electrochemical Energy Storage. <i>Small</i> , 2018 , 14, e180	1 4 79	36
122	The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 287-29	5 ^{3.1}	36
121	MoS2/graphene composites: Fabrication and electrochemical energy storage. <i>Energy Storage</i>		
	Materials, 2020 , 33, 470-502	19.4	36
120		19.4 3·3	35
120 119	Materials, 2020, 33, 470-502 Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents.		
	Materials, 2020, 33, 470-502 Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012, 14, 7330 Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor.	3.3	35
119	Materials, 2020, 33, 470-502 Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012, 14, 7330 Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Mikrochimica Acta, 2014, 181, 1581-1589 Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode	3·3 5.8	35
119	Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012, 14, 7330 Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Mikrochimica Acta, 2014, 181, 1581-1589 Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials. RSC Advances, 2014, 4, 14872-14878 Versatile mesoporous Dylll coordination framework for highly efficient trapping of diverse	3.3 5.8 3.7	35 34 34

(2010-2014)

1	14	Nitrogen-Doped Carbon@opper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. <i>ChemElectroChem</i> , 2014 , 1, 799-807	4.3	31	
1	13	Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. <i>Chinese Chemical Letters</i> , 2020 , 31, 1941-1945	8.1	31	
1	12	Metal Drganic Framework-Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078	8.7	31	
1	11	Highly dispersed and stabilized nickel nanoparticle/silicon oxide/nitrogen-doped carbon composites for high-performance glucose electrocatalysis. <i>Sensors and Actuators B: Chemical</i> , 2019 , 297, 126809	8.5	30	
1	10	Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2883-2889	2.6	29	
1	.09	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8986-8992	8.3	28	
1	08	Hydrothermal Synthesis of Nickel Phosphate Nanorods for High-Performance Flexible Asymmetric All-Solid-State Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 880-885	3.1	28	
1	207	Low-Symmetry Iron Oxide Nanocrystals Bound by High-Index Facets. <i>Angewandte Chemie</i> , 2010 , 122, 6472-6476	3.6	28	
1	206	Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2020 , 380, 122428	14.7	28	
1	.05	Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof ZnBir batteries working from B0 to 100 LC. <i>Energy and Environmental Science</i> ,	35.4	28	
1	04	Rhodium(III)-Catalyzed Cascade [5 + 1] Annulation/5-exo-Cyclization Initiated by C-H Activation: 1,6-Diynes as One-Carbon Reaction Partners. <i>Organic Letters</i> , 2018 , 20, 3245-3249	6.2	28	
1	203	Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the CH Uptake and CH/CH Separation Performance. <i>Inorganic Chemistry</i> , 2018 , 57, 2883-2889	5.1	27	
1	02	Copper-Based Nanomaterials for High-Performance Lithium-Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 784-810	3.1	27	
1	01	When Conductive MOFs Meet MnO: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 33083-33090	9.5	27	
1	.00	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. <i>Science China Materials</i> , 2021 , 64, 137-148	7.1	27	
9	9	Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. <i>RSC Advances</i> , 2014 , 4, 33514-33519	3.7	26	
9)8	Cu superstructures hydrothermally reduced by leaves and derived Cuto3O4 hybrids for flexible solid-state electrochemical energy storage devices. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4840-4847	,13	25	
9	97	Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. <i>CrystEngComm</i> , 2010 , 12, 1404-1409	3.3	25	

96	Metal-Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. <i>Advanced Energy Materials</i> ,2100346	21.8	25	
95	Charge Control in Two Isostructural Anionic/Cationic Co Coordination Frameworks for Enhanced Acetylene Capture. <i>Chemistry - A European Journal</i> , 2016 , 22, 15035-15041	4.8	25	
94	High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 2177-2188	2.6	24	
93	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. <i>Nanoscale</i> , 2020 , 12, 10685-10692	7.7	24	
92	Electrochemical determination of glutathione based on an electrodeposited nickel oxide nanoparticles-modified glassy carbon electrode. <i>Analytical Methods</i> , 2013 , 5, 1779	3.2	23	
91	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213468	23.2	23	
90	A Mixed-Cluster Approach for Building a Highly Porous Cobalt(II) Isonicotinic Acid Framework: Gas Sorption Properties and Computational Analyses. <i>Inorganic Chemistry</i> , 2017 , 56, 2379-2382	5.1	22	
89	Supramolecular G4 Eutectogels of Guanosine with Solvent-Induced Chiral Inversion and Excellent Electrochromic Activity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18768-18773	16.4	22	
88	CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction. <i>Chinese Chemical Letters</i> , 2020 , 31, 2300-2304	8.1	22	
87	Immobilization of polyoxometalate in a cage-based metal®rganic framework towards enhanced stability and highly effective dye degradation. <i>Polyhedron</i> , 2018 , 152, 108-113	2.7	22	
86	Semiconductive Copper(I) Drganic Frameworks for Efficient Light-Driven Hydrogen Generation Without Additional Photosensitizers and Cocatalysts. <i>Angewandte Chemie</i> , 2017 , 129, 14829-14833	3.6	21	
85	Two isomeric Zn(II)-based metal®rganic frameworks constructed from a bifunctional triazolate®arboxylate tecton exhibiting distinct gas sorption behaviors. <i>CrystEngComm</i> , 2016 , 18, 2579-7	2384	21	
84	Ultrathin Nanosheet Ni-Metal Organic Framework Assemblies for High-Efficiency Ascorbic Acid Electrocatalysis. <i>ChemElectroChem</i> , 2018 , 5, 3859-3865	4.3	21	
83	Metal-Organic Framework Supported on Processable Polymer Matrix by In Situ Copolymerization for Enhanced Iron(III) Detection. <i>Chemistry - A European Journal</i> , 2017 , 23, 3885-3890	4.8	20	
82	Nickel hydroxideBickel nanohybrids indirectly from coordination microfibers for high-performance supercapacitor electrodes. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 129-135	6.8	20	
81	Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. Journal of Colloid and Interface Science, 2020 , 580, 614-622	9.3	20	
80	Zeolitic Imidazolate Framework-67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 429-433	3.1	19	
79	Conferring supramolecular guanosine gel nanofiber with ZIF-67 for high-performance oxygen reduction catalysis in rechargeable zinc batteries. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 1198	88 ^{1.8}	19	

(2021-2021)

NIO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. <i>Journal of Colloid and Interface Science</i> , 2021 , 581, 709-718	9.3	19
Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9535-9572	13	19
One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. <i>Chemical Communications</i> , 2019 , 55, 9160-9163	5.8	18
Porous Mn3[Co(CN)6]2[hH2O nanocubes as a rapid organic dyes adsorption material. <i>RSC Advances</i> , 2012 , 2, 9614	3.7	18
Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. <i>Applied Materials Today</i> , 2020 , 18, 100517	6.6	18
Preparation of N, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. <i>RSC Advances</i> , 2017 , 7, 47448-47455	3.7	17
Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. <i>Journal of Energy Storage</i> , 2020 , 31, 101544	7.8	17
A microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metalBrganic framework for photocatalytic H2 generation. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10211-10217	7.1	17
A Coll-based metalorganic framework based on [Co6(B-OH)4] units exhibiting selective sorption of C2H2 over CO2 and CH4. <i>CrystEngComm</i> , 2016 , 18, 3760-3763	3.3	17
Quest for the Ncb-type Metal-Organic Framework Platform: A Bifunctional Ligand Approach Meets Net Topology Needs. <i>Inorganic Chemistry</i> , 2017 , 56, 7328-7331	5.1	16
Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18492-18514	13	16
Advances in metalBrganic framework-based nanozymes and their applications. <i>Coordination Chemistry Reviews</i> , 2021 , 449, 214216	23.2	16
CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. <i>Chinese Chemical Letters</i> , 2020 , 31, 2330-2332	8.1	15
Mechanism-Property Correlation in Coordination Polymer Crystals toward Design of a Superior Sorbent. ACS Applied Materials & amp; Interfaces, 2019, 11, 42375-42384	9.5	15
Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium Bulfur Batteries. <i>Energy and Environmental Materials</i> ,	13	15
Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. <i>Chemical Engineering Journal</i> , 2021 , 416, 127884	14.7	15
Low-Molecular-Weight Supramolecular-Polymer Double-Network Eutectogels for Self-Adhesive and Bidirectional Sensors. <i>Advanced Functional Materials</i> , 2021 , 31, 2104963	15.6	15
Synthesis and application of metal-organic framework films. <i>Coordination Chemistry Reviews</i> , 2021 , 444, 214060	23.2	15
	synthesis and its application in electrochemical energy storage. <i>Journal of Colloid and Interface Science</i> , 2021, 581, 709-718 Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2021, 9, 9535-9572 One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. <i>Chemical Communications</i> , 2019, 55, 9160-9163 Porous Mn3[Co(CN)6]ZhH2O nanocubes as a rapid organic dyes adsorption material. <i>R5C Advances</i> , 2012, 2, 9614 Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. <i>Applied Materials Today</i> , 2020, 18, 100517 Preparation of N. P. co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. <i>R5C Advances</i> , 2017, 7, 47448-47455 Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. <i>Journal of Energy Storage</i> , 2020, 31, 101544 A microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metalBrganic framework for photocatalytic H2 generation. <i>Journal of Materials Chemistry</i> C, 2019, 7, 10211-10217 A Coll-based metalBrganic framework based on [Co6(B-OH)4] units exhibiting selective sorption of C2H2 over CO2 and CH4. <i>CrystEngComm</i> , 2016, 18, 3760-3763 Quest for the Ncb-type Metal-Organic Framework Platform: A Bifunctional Ligand Approach Meets Net Topology Needs. <i>Inorganic Chemistry</i> , 2017, 56, 7328-7331 Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020, 8, 18492-18514 Advances in metalBrganic framework-based nanozymes and their applications. <i>Coordination Chemistry Reviews</i> , 2021, 449, 214216 CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. <i>Chinese Chemical Letters</i> , 2020, 31, 2330-	synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718 Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 9535-9572 One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. Chemical Communications, 2019, 55, 9160-9163 58 Porous Mn3[Co(CN)6]2lhH2O nanocubes as a rapid organic dyes adsorption material. RSC Advances, 2012, 2, 9614 Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. Applied Materials Today, 2020, 18, 100517 Preparation of N, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. RSC Advances, 2017, 7, 47448-47455 Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage, 2020, 31, 101544 A microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metalibrganic framework for photocatalytic H2 generation. Journal of Materials Chemistry, C, 2019, 7, 10211-10217 A Coll-based metalBrganic framework based on [Co6(8-OH)4] units exhibiting selective sorption of C2H2 over CO2 and CH4. CrystEngComm, 2016, 18, 3760-3763 Quest for the Ncb-type Metal-Organic Framework Platform. A Bifunctional Ligand Approach Meets Net Topology Needs. Inorganic Chemistry, 2017, 56, 7328-7331 Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514 Advances in metaligranic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216 CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 2330-2332 Mechanism-Prop

60	Mesoporous NHNiPOIHO for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. <i>Frontiers in Chemistry</i> , 2019 , 7, 118	5	14
59	Synthesis of Co Mn Ni C O ?n H O Micropolyhedrons: Multimetal Synergy for High-Performance Glucose Oxidation Catalysis. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2259-2265	4.5	14
58	Mesoporous ZnS-NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors. <i>ChemistryOpen</i> , 2015 , 4, 32-8	2.3	14
57	Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. <i>Mikrochimica Acta</i> , 2020 , 187, 168	5.8	14
56	A flexible doubly interpenetrated metalBrganic framework with gate opening effect for highly selective C2H2/C2H4 separation at room temperature. <i>CrystEngComm</i> , 2018 , 20, 2341-2345	3.3	14
55	Vanadium-Based Materials as Positive Electrode for Aqueous Zinc-Ion Batteries. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000178	5.9	14
54	Application of graphene-metal/conductive polymer based composites in supercapacitors?. <i>Journal of Energy Storage</i> , 2021 , 33, 102037	7.8	14
53	Single-crystalline hyperbranched nanostructure of iron hydroxyl phosphate Fe5(PO4)4(OH)312H2O for highly selective capture of phosphopeptides. <i>Scientific Reports</i> , 2014 , 4, 3753	4.9	13
52	Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. <i>Journal of Energy Storage</i> , 2019 , 26, 101018	7.8	13
51	Synergic effect of copper-based metalorganic frameworks for highly efficient CH activation of amidines. <i>RSC Advances</i> , 2017 , 7, 51658-51662	3.7	13
50	Exposing (0 0 1) crystal facet on the single crystalline ENi(OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. <i>Chemical Engineering Journal</i> , 2021 , 413, 127523	14.7	12
49	Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13889		11
48	SiOx-based (0 . Chinese Chemical Letters, 2020 , 31, 654-666	8.1	11
47	Construction of SiO/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 784-792	9.3	11
46	Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. <i>Chinese Chemical Letters</i> , 2020 , 31, 2263-2267	8.1	10
45	General synthesis of nitrogen-doped metal (M = Co2+, Mn2+, Ni2+, or Cu2+) phosphates. <i>Chemical Engineering Journal</i> , 2021 , 411, 128544	14.7	10
44	Palladium-Catalyzed C-N Bond Cleavage of 2 H-Azirines for the Synthesis of Functionalized Amido Ketones. <i>Journal of Organic Chemistry</i> , 2019 , 84, 2200-2208	4.2	9
43	Regulation of the Ni Content in a Hierarchical Urchin-Like MOF for High-Performance Electrocatalytic Oxygen Evolution. <i>Frontiers in Chemistry</i> , 2019 , 7, 411	5	9

42	Ultrathin Ni-MOF Nanobelts-Derived Composite for High Sensitive Detection of Nitrite. <i>Frontiers in Chemistry</i> , 2020 , 8, 330	5	9
41	Controllable synthesis of copper ion guided MIL-96 octadecahedron: highly sensitive aptasensor toward alpha-fetoprotein. <i>Applied Materials Today</i> , 2020 , 20, 100745	6.6	9
40	Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast adhesion and flexible electrochromic behaviour. <i>Materials Horizons</i> , 2021 , 8, 2520-2532	14.4	9
39	ZrO2/Dy2O3 Solid Solution Nano-Materials: Tunable Composition, Visible lightResponsive Photocatalytic Activities and Reaction Mechanism. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 2979-2986	3.8	8
38	Template-free synthesis of hierarchically porous NaCoPO4©o3O4 hollow microspheres and their application as electrocatalysts for glucose. <i>CrystEngComm</i> , 2015 , 17, 4540-4546	3.3	8
37	One-dimensional metal-organic frameworks for electrochemical applications. <i>Advances in Colloid and Interface Science</i> , 2021 , 298, 102562	14.3	8
36	A high-activity cobalt-based MOF catalyst for $[2]$ 2 + 2] cycloaddition of diynes and alkynes: insights into alkyne affinity and selectivity control <i>RSC Advances</i> , 2018 , 8, 4895-4899	3.7	7
35	PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2790-2795	4.5	7
34	Nickel-Based Sulfide Materials for Batteries. <i>ChemistrySelect</i> , 2018 , 3, 12967-12986	1.8	7
33	High electrochemical performance carbon nanofibers with hierarchical structure derived from metal-organic framework with natural eggshell membranes. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 811-816	9.3	6
32	Rhodium-catalyzed multiple C-H activation/highly -selective C-H amination between amidines and alkynes. <i>Chemical Communications</i> , 2020 , 56, 11227-11230	5.8	6
31	Framework materials for supercapacitors. <i>Nanotechnology Reviews</i> , 2022 , 11, 1005-1046	6.3	6
30	An Efficient Protocol for the Synthesis of Primary Amides via Rh-Catalyzed Rearrangement of Aldoximes. <i>ChemistrySelect</i> , 2018 , 3, 3474-3478	1.8	5
29	Recent advances in metal organic frameworks and their composites for batteries. <i>Nano Futures</i> , 2020 , 4, 032007	3.6	5
28	Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. <i>Chinese Chemical Letters</i> , 2021 , 32, 2909-2909	8.1	5
27	A new [Co21(H2O)4(OH)12]30+ unit-incorporating polyoxotungstate for sensitive detection of dichlorvos. <i>New Journal of Chemistry</i> , 2020 , 44, 11336-11341	3.6	4
26	Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties. <i>ChemistryOpen</i> , 2015 , 4, 274-7	2.3	4
25	Modified Metal D rganic Frameworks for Electrochemical Applications. <i>Small Structures</i> ,2100200	8.7	4

24	Synthesis of 3D printing materials and their electrochemical applications. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
23	A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
22	Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	4
21	Self-healing mechanism and bioelectrochemical interface properties of core-shell guanosine-borate hydrogels. <i>Journal of Colloid and Interface Science</i> , 2021 , 590, 103-113	9.3	4
20	Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 38, 102528	7.8	4
19	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. <i>Inorganic Chemistry</i> , 2021 , 60, 13168-13176	5.1	4
18	Metal©rganic Framework-Based Sulfur-Loaded Materials. Energy and Environmental Materials,	13	3
17	VOx/VSx@Graphene nanocomposites for electrochemical energy storage. <i>Chemical Engineering Journal</i> , 2021 , 404, 126310	14.7	3
16	Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	3
15	MetalBrganic frameworks-derived metal phosphides for electrochemistry application. <i>Green Energy and Environment</i> , 2021 ,	5.7	3
14	Nitrogen-Doped Carbon©opper Nanohybrids as Electrocatalysts in H2O2 and Glucose Sensing. <i>ChemElectroChem</i> , 2014 , 1, 682-682	4.3	2
13	Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. <i>Chemical Engineering Journal</i> , 2022 , 432, 134413	14.7	2
12	Supramolecular G4 Eutectogels of Guanosine with Solvent-Induced Chiral Inversion and Excellent Electrochromic Activity. <i>Angewandte Chemie</i> , 2020 , 132, 18927-18932	3.6	2
11	Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors. <i>Applied Materials Today</i> , 2021 , 23, 101048	6.6	2
10	Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. <i>Chinese Chemical Letters</i> , 2021 , 32, 2239-2242	8.1	2
9	Lanthanide chain assembled in metalBrganic frameworks: Slow relaxation of the magnetization in Dy(III) and Er(III) complexes. <i>Inorganic Chemistry Communication</i> , 2019 , 102, 30-34	3.1	2
8	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 430, 133040	14.7	1
7	A Novel Ag(I)-Containing Polyoxometalate-Based MOF for Visible-Light-Driven Water Oxidation. Journal of Cluster Science, 2020 , 31, 983-988	3	1

LIST OF PUBLICATIONS

6	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. <i>Crystal Growth and Design</i> , 2021 , 21, 3639-3644	3.5	1
5	An Unusual LnIII-Based Metal-Organic Framework with Dinuclear Nodes Exhibiting Single-Molecular Magnet Behavior. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 5007-5011	2.3	1
4	Supramolecular Gel-Derived Highly Efficient Bifunctional Catalysts for Omnidirectionally Stretchable Zn-Air Batteries with Extreme Environmental Adaptability <i>Advanced Science</i> , 2022 , e2200	753 ^{.6}	1
3	Facile control synthesis of Ag3PO4 and morphologies effects on their photocatalytic properties. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 67-69		0
2	Nanomaterials: The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications (Part. Part. Syst. Charact. 3/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 206-206	3.1	
1	Nano/Micro MOF-Based Materials 2021 , 1-40		