
Chun-Sen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4835310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coordination Chemistry Reviews, 2013, 257, 1282-1305.	9.5	722
2	Transitionâ€Metal (Fe, Co, Ni) Based Metalâ€Organic Frameworks for Electrochemical Energy Storage. Advanced Energy Materials, 2017, 7, 1602733.	10.2	711
3	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	18.7	685
4	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1703259.	10.2	679
5	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
6	Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 19078-19085.	5.2	411
7	Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. Journal of Materials Chemistry A, 2017, 5, 8155-8186.	5.2	394
8	Applications of Metal–Organicâ€Frameworkâ€Derived Carbon Materials. Advanced Materials, 2019, 31, e1804740.	11.1	369
9	Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets for Electrochemical Energy Storage under Aqueous/Solidâ€6tate Electrolyte. Advanced Functional Materials, 2017, 27, 1605784.	7.8	368
10	Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 3619.	15.6	347
11	One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy, 2017, 35, 138-145.	8.2	305
12	Nitrogenâ€Doped Cobalt Oxide Nanostructures Derived from Cobalt–Alanine Complexes for Highâ€Performance Oxygen Evolution Reactions. Advanced Functional Materials, 2018, 28, 1800886.	7.8	302
13	Metal–organic framework composites and their electrochemical applications. Journal of Materials Chemistry A, 2019, 7, 7301-7327.	5.2	284
14	Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe ³⁺ and Al ³⁺ ion detection and VOC vapor sensing. Journal of Materials Chemistry C, 2017, 5, 2311-2317.	2.7	273
15	Vanadium based materials as electrode materials for high performance supercapacitors. Journal of Power Sources, 2016, 329, 148-169.	4.0	272
16	In Situ Anchoring Polymetallic Phosphide Nanoparticles within Porous Prussian Blue Analogue Nanocages for Boosting Oxygen Evolution Catalysis. Nano Letters, 2021, 21, 3016-3025.	4.5	250
17	Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 22070-22076.	5.2	249
18	Semiconductive Copper(I)–Organic Frameworks for Efficient Lightâ€Driven Hydrogen Generation Without Additional Photosensitizers and Cocatalysts. Angewandte Chemie - International Edition, 2017, 56, 14637-14641.	7.2	248

#	Article	IF	CITATIONS
19	A Review of MOFs and Their Compositesâ€Based Photocatalysts: Synthesis and Applications. Advanced Functional Materials, 2021, 31, 2104231.	7.8	243
20	Facile synthesis and superior electrochemical performances of CoNi ₂ S ₄ /graphene nanocomposite suitable for supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 9613-9619.	5.2	241
21	Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. ACS Applied Materials & Interfaces, 2017, 9, 22342-22349.	4.0	229
22	Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer with Exclusive CO ₂ Sorption Selectivity. Journal of the American Chemical Society, 2014, 136, 10906-10909.	6.6	227
23	Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Scientific Reports, 2014, 4, 3577.	1.6	222
24	Nanostructured graphene-based materials for flexible energy storage. Energy Storage Materials, 2017, 9, 150-169.	9.5	205
25	Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 15889-15896.	5.2	189
26	Morphology effect on antibacterial activity of cuprous oxide. Chemical Communications, 2009, , 1076.	2.2	170
27	Twoâ€Đimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry - A European Journal, 2020, 26, 6402-6422.	1.7	168
28	Facile Synthesis of Vanadium Metalâ€Organic Frameworks for Highâ€Performance Supercapacitors. Small, 2018, 14, e1801815.	5.2	167
29	A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.	9.5	159
30	Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. Journal of Materials Chemistry B, 2017, 5, 5234-5239.	2.9	157
31	Core-shell materials for advanced batteries. Chemical Engineering Journal, 2019, 355, 208-237.	6.6	156
32	Applications of Tin Sulfideâ€Based Materials in Lithiumâ€lon Batteries and Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001298.	7.8	154
33	Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chemical Communications, 2009, , 7542.	2.2	152
34	Noble metal-based materials in high-performance supercapacitors. Inorganic Chemistry Frontiers, 2017, 4, 33-51.	3.0	151
35	FeO <i>_x</i> â€Based Materials for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700986.	5.6	151
36	Fe(III)-based metal–organic framework-derived core–shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosensors and Bioelectronics, 2017, 94, 358-364.	5.3	146

#	Article	IF	CITATIONS
37	Syntheses and Energy Storage Applications of M <i>_x</i> S <i>_y</i> (M = Cu, Ag,) Tj ETQ Materials, 2017, 27, 1703949.	q1 1 0.784 7.8	4314 rgBT 142
38	Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 19465-19470.	5.2	136
39	Ultrathin two-dimensional cobalt-organic frameworks nanosheets for electrochemical energy storage. Chemical Engineering Journal, 2019, 373, 1319-1328.	6.6	132
40	Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Transactions, 2012, 41, 13284.	1.6	130
41	Two-Dimensional Zirconium-Based Metal–Organic Framework Nanosheet Composites Embedded with Au Nanoclusters: A Highly Sensitive Electrochemical Aptasensor toward Detecting Cocaine. ACS Sensors, 2017, 2, 998-1005.	4.0	129
42	An anionic Na(<scp>i</scp>)–organic framework platform: separation of organic dyes and post-modification for highly sensitive detection of picric acid. Chemical Communications, 2017, 53, 10668-10671.	2.2	129
43	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
44	Facile one-pot generation of metal oxide/hydroxide@metal–organic framework composites: highly efficient bifunctional electrocatalysts for overall water splitting. Chemical Communications, 2019, 55, 10904-10907.	2.2	127
45	Development and application of self-healing materials in smart batteries and supercapacitors. Chemical Engineering Journal, 2020, 380, 122565.	6.6	127
46	One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Advances, 2014, 4, 6998.	1.7	125
47	Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 2019, 364, 226-243.	6.6	125
48	Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coordination Chemistry Reviews, 2021, 439, 213915.	9.5	125
49	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
50	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
51	Smart Yolk/Shell ZIF-67@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 5027-5033.	3.2	119
52	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
53	Pore modulation of zirconium–organic frameworks for high-efficiency detection of trace proteins. Chemical Communications, 2017, 53, 3941-3944.	2.2	114
54	Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale, 2013, 5, 5752.	2.8	113

#	Article	IF	CITATIONS
55	Core–shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2514-2520.	3.0	113
56	A novel strategy for the synthesis of highly stable ternary SiO _x composites for Li-ion-battery anodes. Journal of Materials Chemistry A, 2019, 7, 15969-15974.	5.2	112
57	Dual-Emitting Dye@MOF Composite as a Self-Calibrating Sensor for 2,4,6-Trinitrophenol. ACS Applied Materials & amp; Interfaces, 2017, 9, 24671-24677.	4.0	111
58	Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. Biosensors and Bioelectronics, 2017, 91, 804-810.	5.3	109
59	When Conductive MOFs Meet MnO ₂ : High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS Applied Materials & amp; Interfaces, 2021, 13, 33083-33090.	4.0	109
60	Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 2018, 12, 284-309.	9.5	107
61	Facile Synthesis of Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 2360-2367.	4.0	106
62	Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation. Chemical Communications, 2015, 51, 2768-2781.	2.2	104
63	Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Materials, 2018, 15, 171-201.	9.5	104
64	Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395, 122692.	6.5	104
65	Exposing {001} Crystal Plane on Hexagonal Niâ€MOF with Surfaceâ€Grown Cross‣inked Meshâ€Structures for Electrochemical Energy Storage. Small, 2019, 15, e1902463.	5.2	103
66	Ultrathin nanosheet-assembled [Ni ₃ (OH) ₂ (PTA) ₂ (H ₂ O) ₄]·2H ₂ O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale, 2018, 10, 13270-13276.	2.8	102
67	Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale, 2010, 2, 920.	2.8	100
68	Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from â^'50 to 100 °C. Energy and Environmental Science, 0, , .	15.6	100
69	Dual-Functionalized Mixed Keggin- and Lindqvist-Type Cu ₂₄ -Based POM@MOF for Visible-Light-Driven H ₂ and O ₂ Evolution. Inorganic Chemistry, 2019, 58, 7229-7235.	1.9	98
70	Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 22123-22147.	5.2	95
71	A water-stable Eu ^{III} -based MOF as a dual-emission luminescent sensor for discriminative detection of nitroaromatic pollutants. Dalton Transactions, 2019, 48, 1843-1849.	1.6	95
72	A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chemical Communications, 2019, 55, 7922-7925.	2.2	94

#	Article	IF	CITATIONS
73	Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical supercapacitors. Dalton Transactions, 2012, 41, 10175.	1.6	93
74	Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chemical Engineering Journal, 2018, 351, 441-461.	6.6	93
75	Lowâ€Molecularâ€Weight Supramolecularâ€Polymer Doubleâ€Network Eutectogels for Selfâ€Adhesive and Bidirectional Sensors. Advanced Functional Materials, 2021, 31, 2104963.	7.8	91
76	Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. RSC Advances, 2012, 2, 2257.	1.7	90
77	Facile synthesis of amorphous aluminum vanadate hierarchical microspheres for supercapacitors. Inorganic Chemistry Frontiers, 2016, 3, 791-797.	3.0	88
78	Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sensors and Actuators B: Chemical, 2018, 265, 104-109.	4.0	86
79	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
80	Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale, 2013, 5, 503-507.	2.8	85
81	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
82	Moisture-Stable Zn(II) Metal–Organic Framework as a Multifunctional Platform for Highly Efficient CO ₂ Capture and Nitro Pollutant Vapor Detection. ACS Applied Materials & Interfaces, 2016, 8, 18043-18050.	4.0	84
83	Copper metal–organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. Nanoscale, 2014, 6, 10989-10994.	2.8	82
84	Sodiumâ€Doped Mesoporous Ni ₂ P ₂ O ₇ Hexagonal Tablets for Highâ€Performance Flexible Allâ€Solidâ€State Hybrid Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1731-1737.	1.7	80
85	A new strategy for the controllable growth of MOF@PBA architectures. Journal of Materials Chemistry A, 2019, 7, 17266-17271.	5.2	80
86	2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. 2D Materials, 2017, 4, 025098.	2.0	79
87	Ultrathin Cu-MOF@δ-MnO ₂ nanosheets for aqueous electrolyte-based high-voltage electrochemical capacitors. Journal of Materials Chemistry A, 2018, 6, 17329-17336.	5.2	79
88	Clean utilization of palm kernel shell: sustainable and naturally heteroatom-doped porous activated carbon for lithium–sulfur batteries. Rare Metals, 2020, 39, 1099-1106.	3.6	79
89	Synthesis of copper(ii) coordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ion battery performances. Journal of Materials Chemistry, 2012, 22, 12609.	6.7	78
90	Dual anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 4236-4259.	5.2	78

#	Article	IF	CITATIONS
91	Synthesis of "Quasi-Ce-MOF―Electrocatalysts for Enhanced Urea Oxidation Reaction Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8675-8680.	3.2	78
92	Supramolecular G4 Eutectogels of Guanosine with Solventâ€Induced Chiral Inversion and Excellent Electrochromic Activity. Angewandte Chemie - International Edition, 2020, 59, 18768-18773.	7.2	77
93	A bracket approach to improve the stability and gas sorption performance of a metal–organic framework via in situ incorporating the size-matching molecular building blocks. Chemical Communications, 2016, 52, 8413-8416.	2.2	76
94	Aptamer-Embedded Zirconium-Based Metal–Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sensors, 2017, 2, 982-989.	4.0	76
95	Synthesis of confining cobalt nanoparticles within SiO /nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 401, 126005.	6.6	75
96	Iron oxide@mesoporous carbon architectures derived from an Fe(<scp>ii</scp>)-based metal organic framework for highly sensitive oxytetracycline determination. Journal of Materials Chemistry A, 2017, 5, 19378-19389.	5.2	73
97	Different positive electrode materials in organic and aqueous systems for aluminium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14391-14418.	5.2	72
98	Porous pyrrhotite Fe7S8 nanowire/SiO /nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. Journal of Colloid and Interface Science, 2020, 561, 801-807.	5.0	69
99	Pore modulation of metal–organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets. Journal of Materials Chemistry A, 2017, 5, 4861-4867.	5.2	68
100	Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. Scientific Reports, 2014, 4, 5687.	1.6	67
101	Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties. RSC Advances, 2012, 2, 5930.	1.7	66
102	Cobaltâ€Ðoped Nickel Phosphite for High Performance of Electrochemical Energy Storage. Small, 2018, 14, e1703811.	5.2	66
103	Clucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chemical Communications, 2010, 46, 2010.	2.2	65
104	Metal–Organic Frameworkâ€Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078.	6.9	65
105	Bimetallic Metalâ€Organic Framework with Highâ€Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries. Energy and Environmental Materials, 2022, 5, 599-607.	7.3	64
106	Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm, 2010, 12, 406-412.	1.3	63
107	Stable Layered Semiconductive Cu(I)–Organic Framework for Efficient Visible-Light-Driven Cr(VI) Reduction and H ₂ Evolution. Inorganic Chemistry, 2018, 57, 7975-7981.	1.9	63
108	A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Mikrochimica Acta, 2013, 180, 821-827.	2.5	62

#	Article	IF	CITATIONS
109	Reed Leaves as a Sustainable Silica Source for 3D Mesoporous Nickel (Cobalt) Silicate Architectures Assembled into Ultrathin Nanoflakes for Highâ€Performance Supercapacitors. Advanced Materials Interfaces, 2015, 2, 1400377.	1.9	62
110	Nickel Phosphite Superstructures Assembled by Nanotubes: Original Application for Effective Electrode Materials of Supercapacitors. ChemPlusChem, 2013, 78, 546-553.	1.3	61
111	Application of metal organic framework in wastewater treatment. Green Energy and Environment, 2023, 8, 698-721.	4.7	61
112	Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm, 2013, 15, 5950.	1.3	60
113	Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1383-1391.	1.2	60
114	Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. Journal of Solid State Electrochemistry, 2014, 18, 1049-1056.	1.2	60
115	Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis. Chemical Engineering Journal, 2020, 395, 125166.	6.6	60
116	Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast <i>in situ</i> adhesion and flexible electrochromic behaviour. Materials Horizons, 2021, 8, 2520-2532.	6.4	60
117	Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 5053.	5.2	59
118	Ligand Symmetry Modulation for Designing a Mesoporous Metal–Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. Chemistry - A European Journal, 2015, 21, 9713-9719.	1.7	59
119	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale, 2020, 12, 10685-10692.	2.8	58
120	Ligand Symmetry Modulation for Designing Mixed-Ligand Metal–Organic Frameworks: Gas Sorption and Luminescence Sensing Properties. Inorganic Chemistry, 2016, 55, 8892-8897.	1.9	56
121	One Dimensional Silverâ€based Nanomaterials: Preparations and Electrochemical Applications. Small, 2017, 13, 1701091.	5.2	56
122	Nitrogen-, phosphorus-doped carbon–carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Metals, 2020, 39, 680-687.	3.6	55
123	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	3.5	55
124	Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. Journal of Colloid and Interface Science, 2020, 580, 614-622.	5.0	54
125	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
126	Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 9535-9572.	5.2	54

#	Article	IF	CITATIONS
127	Mesoporous 3D ZnO–NiO architectures for high-performance supercapacitor electrode materials. CrystEngComm, 2014, 16, 4169-4175.	1.3	53
128	From Co-MOF to CoNi-MOF to Ni-MOF: A Facile Synthesis of 1D Micro-/Nanomaterials. Inorganic Chemistry, 2021, 60, 13168-13176.	1.9	53
129	Room temperature synthesis of cobalt-manganese-nickel oxalates micropolyhedrons for high-performance flexible electrochemical energy storage device. Scientific Reports, 2015, 5, 8536.	1.6	52
130	Conferring supramolecular guanosine gel nanofiber with ZIF-67 for high-performance oxygen reduction catalysis in rechargeable zinc–air batteries. Applied Catalysis B: Environmental, 2021, 286, 119888.	10.8	52
131	Synthesis and application of metal-organic framework films. Coordination Chemistry Reviews, 2021, 444, 214060.	9.5	51
132	NH ₄ CoPO ₄ ·H ₂ O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors. RSC Advances, 2014, 4, 340-347.	1.7	50
133	The Research Development of Quantum Dots in Electrochemical Energy Storage. Small, 2018, 14, e1801479.	5.2	50
134	Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage. Chinese Chemical Letters, 2020, 31, 2280-2286.	4.8	50
135	A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8986-8992.	3.2	48
136	Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. Chinese Chemical Letters, 2020, 31, 1941-1945.	4.8	48
137	Hierarchically Porous NaCoPO ₄ -Co ₃ O ₄ Hollow Microspheres for Flexible Asymmetric Solid-State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 831-839.	1.2	47
138	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514.	5.2	47
139	Microporous Cobalt(II)–Organic Framework with Open O-Donor Sites for Effective C ₂ H ₂ Storage and C ₂ H ₂ /CO ₂ Separation at Room Temperature. Inorganic Chemistry, 2017, 56, 14767-14770.	1.9	45
140	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
141	MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Materials, 2022, 51, 840-872.	9.5	45
142	NiO nanoparticles decorated hexagonal Nickel-based metal-organic framework: Self-template synthesis and its application in electrochemical energy storage. Journal of Colloid and Interface Science, 2021, 581, 709-718.	5.0	44
143	Niobium/tantalum-based materials: Synthesis and applications in electrochemical energy storage. Chemical Engineering Journal, 2020, 380, 122428.	6.6	43
144	Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. Chemical Communications, 2011, 47, 11772.	2.2	41

#	Article	IF	CITATIONS
145	Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Mikrochimica Acta, 2014, 181, 1581-1589.	2.5	41
146	Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents. CrystEngComm, 2012, 14, 7330.	1.3	40
147	Exposing (0 0 1) crystal facet on the single crystalline β-Ni(OH)2 quasi-nanocubes for aqueous Ni-Zn batteries. Chemical Engineering Journal, 2021, 413, 127523.	6.6	40
148	Rhodium(III)-Catalyzed Cascade [5 + 1] Annulation/5-exo-Cyclization Initiated by C–H Activation: 1,6-Diynes as One-Carbon Reaction Partners. Organic Letters, 2018, 20, 3245-3249.	2.4	39
149	PBA@POM Hybrids as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 2790-2795.	1.7	39
150	The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications. Particle and Particle Systems Characterization, 2013, 30, 287-295.	1.2	38
151	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
152	Ultrathin Nanosheet Niâ€Metal Organic Framework Assemblies for Highâ€Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem, 2018, 5, 3859-3865.	1.7	37
153	Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chemical Engineering Journal, 2021, 416, 127884.	6.6	37
154	Nitrogenâ€Doped Carbon–Copper Nanohybrids as Electrocatalysts in H ₂ O ₂ and Glucose Sensing. ChemElectroChem, 2014, 1, 799-807.	1.7	36
155	Vanadiumâ€Based Materials as Positive Electrode for Aqueous Zincâ€Ion Batteries. Advanced Sustainable Systems, 2020, 4, 2000178.	2.7	36
156	Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage, 2020, 31, 101544.	3.9	36
157	Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. Bulletin of the Chemical Society of Japan, 2022, 95, 230-260.	2.0	36
158	Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials. RSC Advances, 2014, 4, 14872-14878.	1.7	35
159	Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chinese Chemical Letters, 2022, 33, 1412-1416.	4.8	35
160	Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. Journal of Solid State Electrochemistry, 2012, 16, 2883-2889.	1.2	34
161	Highly dispersed and stabilized nickel nanoparticle/silicon oxide/nitrogen-doped carbon composites for high-performance glucose electrocatalysis. Sensors and Actuators B: Chemical, 2019, 297, 126809.	4.0	34
162	CoP@SiO2nanoreactors: A core-shell structure for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2020, 31, 2300-2304.	4.8	34

#	Article	IF	CITATIONS
163	Versatile Mesoporous Dy ^{III} Coordination Framework for Highly Efficient Trapping of Diverse Pollutants. Inorganic Chemistry, 2014, 53, 7074-7076.	1.9	33
164	Hydrothermal Synthesis of Nickel Phosphate Nanorods for Highâ€Performance Flexible Asymmetric Allâ€Solidâ€State Supercapacitors. Particle and Particle Systems Characterization, 2015, 32, 880-885.	1.2	33
165	Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C ₂ H ₂ Uptake and C ₂ H ₂ /C ₂ H ₄ Separation Performance. Inorganic Chemistry, 2018, 57, 2883-2889.	1.9	32
166	Immobilization of polyoxometalate in a cage-based metal–organic framework towards enhanced stability and highly effective dye degradation. Polyhedron, 2018, 152, 108-113.	1.0	32
167	Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chinese Chemical Letters, 2021, 32, 2909-2913.	4.8	32
168	Metal–organic frameworks-derived metal phosphides for electrochemistry application. Green Energy and Environment, 2022, 7, 636-661.	4.7	32
169	Framework materials for supercapacitors. Nanotechnology Reviews, 2022, 11, 1005-1046.	2.6	32
170	Copper-Based Nanomaterials for High-Performance Lithium-Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 784-810.	1.2	30
171	A microporous mixed-metal (Na/Cu) mixed-ligand (flexible/rigid) metal–organic framework for photocatalytic H ₂ generation. Journal of Materials Chemistry C, 2019, 7, 10211-10217.	2.7	30
172	Construction of SiO /nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. Journal of Colloid and Interface Science, 2022, 606, 784-792.	5.0	30
173	Charge Control in Two Isostructural Anionic/Cationic Co ^{II} Coordination Frameworks for Enhanced Acetylene Capture. Chemistry - A European Journal, 2016, 22, 15035-15041.	1.7	29
174	Preparation ofÂN, P co-doped activated carbons derived from honeycomb as an electrode material for supercapacitors. RSC Advances, 2017, 7, 47448-47455.	1.7	29
175	Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage, 2019, 26, 101018.	3.9	29
176	Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. Mikrochimica Acta, 2020, 187, 168.	2.5	29
177	Controlled fabrication and property studies of nickel hydroxide and nickel oxidenanostructures. CrystEngComm, 2010, 12, 1404-1409.	1.3	28
178	A Mixed-Cluster Approach for Building a Highly Porous Cobalt(II) Isonicotinic Acid Framework: Gas Sorption Properties and Computational Analyses. Inorganic Chemistry, 2017, 56, 2379-2382.	1.9	28
179	CeO2 quantum dots doped Ni-Co hydroxide nanosheets for ultrahigh energy density asymmetric supercapacitors. Chinese Chemical Letters, 2020, 31, 2330-2332.	4.8	28
180	Cu superstructures hydrothermally reduced by leaves and derived Cu–Co ₃ O ₄ hybrids for flexible solid-state electrochemical energy storage devices. Journal of Materials Chemistry A, 2016, 4, 4840-4847.	5.2	27

#	Article	IF	CITATIONS
181	Synthesis of 3D printing materials and their electrochemical applications. Chinese Chemical Letters, 2022, 33, 3681-3694.	4.8	27
182	Mesoporous Ni0.3Co2.7O4 hierarchical structures for effective non-enzymatic glucose detection. RSC Advances, 2014, 4, 33514-33519.	1.7	26
183	Semiconductive Copper(I)–Organic Frameworks for Efficient Lightâ€Driven Hydrogen Generation Without Additional Photosensitizers and Cocatalysts. Angewandte Chemie, 2017, 129, 14829-14833.	1.6	26
184	One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. Chemical Communications, 2019, 55, 9160-9163.	2.2	26
185	Formation mechanism and properties of NiCoFeLDH@ZIF-67 composites. Chinese Chemical Letters, 2021, 32, 3123-3127.	4.8	26
186	Electrochemical determination of glutathione based on an electrodeposited nickel oxide nanoparticles-modified glassy carbon electrode. Analytical Methods, 2013, 5, 1779.	1.3	25
187	High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. Journal of Solid State Electrochemistry, 2015, 19, 2177-2188.	1.2	25
188	Amorphous cobalt phosphate porous nanosheets derived from two-dimensional cobalt phosphonate organic frameworks for high performance of oxygen evolution reaction. Applied Materials Today, 2020, 18, 100517.	2.3	25
189	Two isomeric Zn(<scp>ii</scp>)-based metal–organic frameworks constructed from a bifunctional triazolate–carboxylate tecton exhibiting distinct gas sorption behaviors. CrystEngComm, 2016, 18, 2579-2584.	1.3	24
190	Mechanism–Property Correlation in Coordination Polymer Crystals toward Design of a Superior Sorbent. ACS Applied Materials & Interfaces, 2019, 11, 42375-42384.	4.0	24
191	Metal–Organic Frameworkâ€Based Sulfur‣oaded Materials. Energy and Environmental Materials, 2022, 5, 215-230.	7.3	24
192	Nickel hydroxide–nickel nanohybrids indirectly from coordination microfibers for high-performance supercapacitor electrodes. Inorganic Chemistry Frontiers, 2015, 2, 129-135.	3.0	23
193	Metal–Organic Framework Supported on Processable Polymer Matrix by In Situ Copolymerization for Enhanced Iron(III) Detection. Chemistry - A European Journal, 2017, 23, 3885-3890.	1.7	23
194	SiO -based (0 < x â‰ ê €‰2) composites for lithium-ion batteries. Chinese Chemical Letters, 202	20, && , 654	4-6£6.
195	Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. Chemical Engineering Journal, 2022, 432, 134413.	6.6	23
196	A Co ^{II} -based metal–organic framework based on [Co ₆ (μ ₃ -OH) ₄] units exhibiting selective sorption of C ₂ H ₂ over CO ₂ and CH ₄ . CrystEngComm, 2016, 18, 3760-3763.	1.3	22
197	Mesoporous NH4NiPO4·H2O for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. Frontiers in Chemistry, 2019, 7, 118.	1.8	22

198Application of graphene-metal/conductive polymer based composites in supercapacitors✰. Journal of
Energy Storage, 2021, 33, 102037.3.922

#	Article	IF	CITATIONS
199	General synthesis of nitrogen-doped metal (MÂ=ÂCo2+, Mn2+, Ni2+, or Cu2+) phosphates. Chemical Engineering Journal, 2021, 411, 128544.	6.6	22
200	Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator. Materials Horizons, 2022, 9, 1700-1707.	6.4	22
201	Zeolitic Imidazolate Framework-67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione. Particle and Particle Systems Characterization, 2015, 32, 429-433.	1.2	21
202	Quest for the Ncb -type Metal–Organic Framework Platform: A Bifunctional Ligand Approach Meets Net Topology Needs. Inorganic Chemistry, 2017, 56, 7328-7331.	1.9	21
203	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
204	Directional Growth of Conductive Metal–Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 25878-25885.	4.0	20
205	Porous Mn3[Co(CN)6]2·nH2O nanocubes as a rapid organic dyes adsorption material. RSC Advances, 2012, 2, 9614.	1.7	19
206	Self-healing mechanism and bioelectrochemical interface properties of core-shell guanosine-borate hydrogels. Journal of Colloid and Interface Science, 2021, 590, 103-113.	5.0	19
207	Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors. ChemistryOpen, 2015, 4, 32-38.	0.9	18
208	Single-Crystalline Hyperbranched Nanostructure of Iron Hydroxyl Phosphate Fe5(PO4)4(OH)3·2H2O for Highly Selective Capture of Phosphopeptides. Scientific Reports, 2014, 4, 3753.	1.6	18
209	Ultrathin Ni-MOF Nanobelts-Derived Composite for High Sensitive Detection of Nitrite. Frontiers in Chemistry, 2020, 8, 330.	1.8	18
210	Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. Journal of Energy Storage, 2021, 38, 102528.	3.9	18
211	Programmable Transient Supramolecular Chiral Gâ€quadruplex Hydrogels by a Chemically Fueled Nonâ€equilibrium Selfâ€Assembly Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
212	Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. Journal of Materials Chemistry, 2011, 21, 13889.	6.7	17
213	A flexible doubly interpenetrated metal–organic framework with gate opening effect for highly selective C ₂ H ₂ /C ₂ H ₄ separation at room temperature. CrystEngComm, 2018, 20, 2341-2345.	1.3	17
214	Synergic effect of copper-based metal–organic frameworks for highly efficient C–H activation of amidines. RSC Advances, 2017, 7, 51658-51662.	1.7	16
215	Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. Chinese Chemical Letters, 2020, 31, 2263-2267.	4.8	16
216	A controllable preparation of two-dimensional cobalt oxalate-based nanostructured sheets for electrochemical energy storage. Chinese Chemical Letters, 2022, 33, 3249-3254.	4.8	16

#	Article	IF	CITATIONS
217	Synthesis of Co _{0.5} Mn _{0.1} Ni _{0.4} C ₂ O ₄ â< <i>n</i> H <sub Micropolyhedrons: Multimetal Synergy for Highâ€Performance Glucose Oxidation Catalysis. Chemistry - an Asian Journal, 2019, 14, 2259-2265.</sub 	>2	014
218	A new [Co ₂₁ (H ₂ O) ₄ (OH) ₁₂] ³⁰⁺ unit-incorporating polyoxotungstate for sensitive detection of dichlorvos. New Journal of Chemistry, 2020, 44, 11336-11341.	1.4	14
219	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	6.6	14
220	Palladium-Catalyzed C–N Bond Cleavage of 2 <i>H</i> -Azirines for the Synthesis of Functionalized α-Amido Ketones. Journal of Organic Chemistry, 2019, 84, 2200-2208.	1.7	13
221	Controllable synthesis of copper ion guided MIL-96 octadecahedron: highly sensitive aptasensor toward alpha-fetoprotein. Applied Materials Today, 2020, 20, 100745.	2.3	13
222	Rhodium-catalyzed multiple C–H activation/highly <i>meta</i> -selective C–H amination between amidines and alkynes. Chemical Communications, 2020, 56, 11227-11230.	2.2	13
223	Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. Chinese Chemical Letters, 2021, 32, 2239-2242.	4.8	13
224	<scp><scp>ZrO</scp></scp> ₂ / <scp><scp>Dy</scp>₂2</scp> Solid Solution Nanoâ€Materials: Tunable Composition, Visible light–Responsive Photocatalytic Activities and Reaction Mechanism. Journal of the American Ceramic Society, 2013, 96, 2979-2986.	> _{3< 1.9}	:/sub> 12
225	Regulation of the Ni2+ Content in a Hierarchical Urchin-Like MOF for High-Performance Electrocatalytic Oxygen Evolution. Frontiers in Chemistry, 2019, 7, 411.	1.8	12
226	A high-activity cobalt-based MOF catalyst for [2Â+ 2 + 2] cycloaddition of diynes and alkynes: insights into alkyne affinity and selectivity control. RSC Advances, 2018, 8, 4895-4899.	1.7	11
227	Controllable synthesis of a flower-like superstructure of nickel metal-organic phosphate and its derivatives for supercapacitors. Applied Materials Today, 2021, 23, 101048.	2.3	11
228	Supramolecular Gelâ€Derived Highly Efficient Bifunctional Catalysts for Omnidirectionally Stretchable Zn–Air Batteries with Extreme Environmental Adaptability. Advanced Science, 2022, 9, e2200753.	5.6	11
229	Nickelâ€Based Sulfide Materials for Batteries. ChemistrySelect, 2018, 3, 12967-12986.	0.7	10
230	High electrochemical performance carbon nanofibers with hierarchical structure derived from metal-organic framework with natural eggshell membranes. Journal of Colloid and Interface Science, 2020, 560, 811-816.	5.0	9
231	VOx/VSx@Graphene nanocomposites for electrochemical energy storage. Chemical Engineering Journal, 2021, 404, 126310.	6.6	9
232	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. Crystal Growth and Design, 2021, 21, 3639-3644.	1.4	9
233	Recent advances in metal organic frameworks and their composites for batteries. Nano Futures, 2020, 4, 032007.	1.0	9
234	Template-free synthesis of hierarchically porous NaCoPO ₄ –Co ₃ O ₄ hollow microspheres and their application as electrocatalysts for glucose. CrystEngComm, 2015, 17, 4540-4546.	1.3	8

#	Article	IF	CITATIONS
235	An Efficient Protocol for the Synthesis of Primary Amides via Rhâ€Catalyzed Rearrangement of Aldoximes. ChemistrySelect, 2018, 3, 3474-3478.	0.7	8
236	Supramolecular G4 Eutectogels of Guanosine with Solventâ€Induced Chiral Inversion and Excellent Electrochromic Activity. Angewandte Chemie, 2020, 132, 18927-18932.	1.6	7
237	Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties. ChemistryOpen, 2015, 4, 274-277.	0.9	6
238	Lanthanide chain assembled in metal–organic frameworks: Slow relaxation of the magnetization in Dy(III) and Er(III) complexes. Inorganic Chemistry Communication, 2019, 102, 30-34.	1.8	4
239	An Unusual Ln ^{III} â€Based Metalâ€Organic Framework with Dinuclear Nodes Exhibiting Singleâ€Molecular Magnet Behavior. European Journal of Inorganic Chemistry, 2018, 2018, 5007-5011.	1.0	3
240	A Novel Ag(I)-Containing Polyoxometalate-Based MOF for Visible-Light-Driven Water Oxidation. Journal of Cluster Science, 2020, 31, 983-988.	1.7	3
241	Programmable Transient Supramolecular Chiral Gâ€quadruplex Hydrogels by a Chemically Fueled Nonâ€equilibrium Selfâ€Assembly Strategy. Angewandte Chemie, 2022, 134, .	1.6	3
242	Nitrogen-Doped Carbon-Copper Nanohybrids as Electrocatalysts in H2O2and Glucose Sensing. ChemElectroChem, 2014, 1, 682-682.	1.7	2
243	Facile control synthesis of Ag3PO4 and morphologies effects on their photocatalytic properties. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 67-69.	0.1	1
244	Nanomaterials: The Morphology Evolution of Nickel Phosphite Hexagonal Polyhedrons and Their Primary Electrochemical Capacitor Applications (Part. Part. Syst. Charact. 3/2013). Particle and Particle Systems Characterization, 2013, 30, 206-206.	1.2	0
245	Nano/Micro MOF-Based Materials. , 2021, , 1-40.		0