
Harald Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4835189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 2011, 478, 524-528.	13.7	1,656
2	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	12.8	599
3	Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood, 2014, 123, 3951-3962.	0.6	189
4	High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood, 2011, 117, 3409-3420.	0.6	168
5	Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia (AML). Oncotarget, 2012, 3, 1588-1599.	0.8	144
6	Immunosuppression and atypical infections in CML patients treated with dasatinib at $140\hat{e}fmg$ daily. European Journal of Clinical Investigation, 2009, 39, 1098-1109.	1.7	92
7	A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood, 2014, 124, 111-120.	0.6	80
8	Cancer stem cells in basic science and in translational oncology: can we translate into clinical application?. Journal of Hematology and Oncology, 2015, 8, 16.	6.9	80
9	The effects of dasatinib on IgE receptor–dependent activation and histamine release in human basophils. Blood, 2008, 111, 3097-3107.	0.6	78
10	Midostaurin (PKC412) inhibits immunoglobulin Eâ€dependent activation and mediator release in human blood basophils and mast cells. Clinical and Experimental Allergy, 2009, 39, 1711-1720.	1.4	72
11	A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia, 2010, 24, 44-50.	3.3	67
12	Delineation of target expression profiles in CD34+/CD38â^' and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Advances, 2020, 4, 5118-5132.	2.5	62
13	CD34+/CD38- stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin. Haematologica, 2012, 97, 219-226.	1.7	59
14	Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells. Best Practice and Research in Clinical Haematology, 2010, 23, 369-378.	0.7	53
15	Identification of CD25 as STAT5-Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML. Clinical Cancer Research, 2016, 22, 2051-2061.	3.2	52
16	DPPIV (CD26) as a novel stem cell marker in Ph+ chronic myeloid leukaemia. European Journal of Clinical Investigation, 2014, 44, 1239-1245.	1.7	51
17	Developmental, Malignancy-Related, and Cross-Species Analysis of Eosinophil, Mast Cell, and Basophil Siglec-8 Expression. Journal of Clinical Immunology, 2011, 31, 1045-1053.	2.0	50
18	In vitro and in vivo growth-inhibitory effects of cladribine on neoplastic mast cells exhibiting the imatinib-resistant KIT mutation D816V. Experimental Hematology, 2010, 38, 744-755.	0.2	46

HARALD HERRMANN

#	Article	IF	CITATIONS
19	Identification of Basophils as a Major Source of Hepatocyte Growth Factor in Chronic Myeloid Leukemia: A Novel Mechanism of BCR-ABL1-Independent Disease Progression. Neoplasia, 2012, 14, 572-IN10.	2.3	45
20	Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. International Journal of Molecular Sciences, 2019, 20, 4233.	1.8	44
21	5-azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand. Blood, 2012, 119, 4242-4252.	0.6	41
22	Identification of Ponatinib as a potent inhibitor of growth, migration, and activation of neoplastic eosinophils carrying FIP1L1-PDGFRA. Experimental Hematology, 2014, 42, 282-293.e4.	0.2	41
23	Identification of oncostatin M as a JAK2 V617Fâ€dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. FASEB Journal, 2012, 26, 894-906.	0.2	40
24	Reducing allergenicity by altering allergen fold: a mosaic protein of Phl p 1 for allergy vaccination. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 569-580.	2.7	36
25	Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia. Haematologica, 2017, 102, 1519-1529.	1.7	36
26	Altered IgE epitope presentation: A model for hypoallergenic activity revealed for Bet v 1 trimer. Molecular Immunology, 2011, 48, 431-441.	1.0	33
27	Phenotyping and Target Expression Profiling of CD34+/CD38â~' and CD34+/CD38+ Stem- and Progenitor cells in Acute Lymphoblastic Leukemia. Neoplasia, 2018, 20, 632-642.	2.3	32
28	Expression of CD25 on leukemic stem cells in BCR-ABL1+ CML: Potential diagnostic value and functional implications. Experimental Hematology, 2017, 51, 17-24.	0.2	31
29	Quantitative assessment of the CD26+ leukemic stem cell compartment in chronic myeloid leukemia: patient-subgroups, prognostic impact, and technical aspects. Oncotarget, 2016, 7, 33016-33024.	0.8	31
30	Neoplastic stem cells: Current concepts and clinical perspectives. Critical Reviews in Oncology/Hematology, 2010, 76, 79-98.	2.0	29
31	The Hsp32 Inhibitors SMA-ZnPP and PEG-ZnPP Exert Major Growth-Inhibitory Effects on D34+/CD38+ and CD34+/CD38- AML Progenitor Cells. Current Cancer Drug Targets, 2012, 12, 51-63.	0.8	28
32	Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells. European Journal of Clinical Investigation, 2009, 39, 395-405.	1.7	26
33	Identification of Campath-1 (CD52) as Novel Drug Target in Neoplastic Stem Cells in 5q-Patients with MDS and AML. Clinical Cancer Research, 2014, 20, 3589-3602.	3.2	26
34	The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia. Critical Reviews in Oncology/Hematology, 2014, 90, 1-16.	2.0	24
35	CD52 is a molecular target in advanced systemic mastocytosis. FASEB Journal, 2014, 28, 3540-3551.	0.2	24
36	The PI3-Kinase/mTOR-Targeting Drug NVP-BEZ235 Inhibits Growth and IgE-Dependent Activation of Human Mast Cells and Basophils. PLoS ONE, 2012, 7, e29925.	1.1	24

HARALD HERRMANN

#	Article	IF	CITATIONS
37	Targeting of Hsp32 in Solid Tumors and Leukemias: A Novel Approach to Optimize Anticancer Therapy (Supplementry Material). Current Cancer Drug Targets, 2009, 9, 675-689.	0.8	21
38	Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia. Leukemia, 2015, 29, 2230-2237.	3.3	21
39	Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia, 2018, 32, 1016-1022.	3.3	20
40	Identification of heat shock protein 32 (Hsp32) as a novel target in acute lymphoblastic leukemia. Oncotarget, 2014, 5, 1198-1211.	0.8	19
41	<scp>NI</scp> â€1: a novel canine mastocytoma model for studying drug resistance and <scp>I</scp> g <scp>ER</scp> â€dependent mast cell activation. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 858-868.	2.7	18
42	Polo-like kinase-1 as a novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of small interfering RNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica, 2011, 96, 672-680.	1.7	17
43	Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Experimental Hematology, 2018, 57, 50-59.e6.	0.2	16
44	Redistribution, homing and organ-invasion of neoplastic stem cells in myeloid neoplasms. Seminars in Cancer Biology, 2020, 60, 191-201.	4.3	15
45	FLAG-induced remission in a patient with acute mast cell leukemia (MCL) exhibiting t(7;10)(q22;q26) and KIT D816H. Leukemia Research Reports, 2014, 3, 8-13.	0.2	12
46	Serum CD44 levels predict survival in patients with low-risk myelodysplastic syndromes. Critical Reviews in Oncology/Hematology, 2011, 78, 150-161.	2.0	11
47	Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: Perspectives and open issues. Stem Cells Translational Medicine, 2020, 9, 1331-1343.	1.6	11
48	Stable non-transforming minimal residual disease in Philadelphia chromosome positive acute lymphoblastic leukemia after autologous transplantation: origin from neoplastic yet â€~pre-leukemic' stem cells?. Leukemia and Lymphoma, 2011, 52, 842-848.	0.6	8
49	An MR-only acquisition and artificial intelligence based image-processing protocol for photon and proton therapy using a low field MR. Zeitschrift Fur Medizinische Physik, 2021, 31, 78-88.	0.6	7
50	Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single â€~hit' and cooperate in producing a mastocytosis-like disease in mice. Oncotarget, 2010, 1, 104-119.	0.8	6
51	Evaluation of <i>in vitro</i> effects of various targeted drugs on plasma cells and putative neoplastic stem cells in patients with multiple myeloma. Oncotarget, 2016, 7, 65627-65642.	0.8	6
52	Potential association of the prognostic index and survival in patients with p16-positive oropharyngeal squamous cell carcinoma. Wiener Klinische Wochenschrift, 2021, 133, 1117-1121.	1.0	4
53	Nilotinib and Imatinib Are Comparably Effective in Reducing Growth of Human Eosinophil Leukemia Cells in a Newly Established Xenograft Model. PLoS ONE, 2012, 7, e30567.	1.1	4
54	Ludwig Boltzmann Cluster Oncology (LBC ONC): first 10Âyears and future perspectives. Wiener Klinische Wochenschrift, 2018, 130, 517-529.	1.0	3

4

HARALD HERRMANN

#	Article	IF	CITATIONS
55	4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study. PLoS ONE, 2019, 14, e0225673.	1.1	3
56	A kinase profile-adapted drug combination elicits synergistic cooperative effects on leukemic cells carrying BCR-ABL1T315I in Ph+ CML. Leukemia Research, 2019, 78, 36-44.	0.4	3
57	Glucocorticosteroids Rescue Basophils from Dasatinib-Augmented Immunoglobulin E-Mediated Histamine Release. International Archives of Allergy and Immunology, 2012, 159, 15-22.	0.9	2
58	Are there still indications for whole brain irradiation in 2021?. Memo - Magazine of European Medical Oncology, 2021, 14, 204-207.	0.3	2
59	Evaluation of Cell Surface Markers and Targets in Leukemic Stem Cells (LSC) Reveals Distinct Expression Profiles, Unique Drug Effects, and Specific Checkpoint Regulation in AML LSC and CML LSC. Blood, 2016, 128, 4234-4234.	0.6	2
60	Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single 'hit' and cooperate in producing a mastocytosis-like disease in mice. Oncotarget, 2010, 1, 104-19.	0.8	2
61	Advancements in the radiooncological treatment of high-risk prostate cancer: a quarter century of achievements. Radiology and Oncology, 2022, 56, 365-370.	0.6	2
62	Phenotypic and Functional Characterization of CD34+/CD38-/CD123+ Leukemic Progenitor (Stem) Cells in AML: a Flow Cytometric Approach Blood, 2008, 112, 1340-1340.	0.6	1
63	5-Azacytidine and Decitabine Induce Demethylation and Re-Expression of FAS (CD95) and Promote Apoptosis in Neoplastic Cells in Acute Myeloid Leukemia (AML),. Blood, 2011, 118, 3463-3463.	0.6	1
64	Phenotyping Of Leukemic Stem Cells In Ph+ ALL and Ph- ALL Reveals Unique Profiles Of Markers and Targets In Distinct Disease Variants. Blood, 2013, 122, 1654-1654.	0.6	1
65	Bromodomain-Containing Protein 4 (BRD4): A Novel Marker and Drug Target Expressed In Neoplastic Cells In Advanced Mast Cell Neoplasms. Blood, 2013, 122, 3747-3747.	0.6	1
66	The Oncogenic Transcription Factor STAT5 Triggers Aberrant Expression Of CD25 (IL-2RA) In Neoplastic Stem Cells In Ph+ CML. Blood, 2013, 122, 3979-3979.	0.6	1
67	Combined Targeting of STAT3 and STAT5: A Novel Approach to Overcome Drug Resistance in Ph+ Cml. Blood, 2016, 128, 4241-4241.	0.6	1
68	Revealing Six Phases of CML Stem Cell Development to Explain Clinical Phenomena Seen in TKI-Treated Patients Blood, 2009, 114, 4263-4263.	0.6	0
69	Identification of CD44 As a RAS-MEK-Regulated Invasion Receptor That Is Overexpressed in Neoplastic Mast Cells and Triggers Disease Expansion in Advanced Systemic Mastocytosis. Blood, 2016, 128, 1955-1955.	0.6	0
70	Long-Term Swallowing Outcome and Dysphagia in Advanced Staged Head and Neck Squamous Cell Carcinomas after Radiotherapy. Journal of Clinical Medicine, 2022, 11, 2688.	1.0	0