Maria Lerm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833978/publications.pdf

Version: 2024-02-01

147566 168136 2,993 64 31 53 citations h-index g-index papers 74 74 74 4493 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	DNA methylome-based validation of induced sputum as an effective protocol to study lung immunity: construction of a classifier of pulmonary cell types. Epigenetics, 2022, 17, 882-893.	1.3	4
2	A high content screening assay for discovery of antimycobacterial compounds based on primary human macrophages infected with virulent Mycobacterium tuberculosis. Tuberculosis, 2022, 135, 102222.	0.8	3
3	Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 <i>in vivo</i> and <i>in vitro</i> . Epigenetics, 2022, 17, 1875-1891.	1.3	5
4	Parental TB associated with offspring asthma and rhinitis. International Journal of Tuberculosis and Lung Disease, 2022, 26, 544-549.	0.6	2
5	A high-throughput screening assay based on automated microscopy for monitoring antibiotic susceptibility of Mycobacterium tuberculosis phenotypes. BMC Microbiology, 2021, 21, 167.	1.3	3
6	A differential DNA methylome signature of pulmonary immune cells from individuals converting to latent tuberculosis infection. Scientific Reports, 2021, 11, 19418.	1.6	12
7	CD4+CCR6+ T cells dominate the BCG-induced transcriptional signature. EBioMedicine, 2021, 74, 103746.	2.7	11
8	A novel mycobacterial growth inhibition assay employing live-cell imaging of virulent M. tuberculosis and monitoring of host cell viability. Tuberculosis, 2020, 124, 101977.	0.8	1
9	On the relationship between BCG coverage and national COVIDâ€19 outcome: could †heterologous' herd immunity explain why some countries are better off?. Journal of Internal Medicine, 2020, 288, 682-688.	2.7	10
10	The effect of BCG vaccination on alveolar macrophages obtained from induced sputum from healthy volunteers. Cytokine, 2020, 133, 155135.	1.4	10
11	Good old BCG – what a centuryâ€old vaccine can contribute to modern medicine. Journal of Internal Medicine, 2020, 288, 611-613.	2.7	9
12	Resistance of Zwitterionic Peptide Monolayers to Biofouling. Langmuir, 2019, 35, 1818-1827.	1.6	41
13	Identification of DNA methylation patterns predisposing for an efficient response to BCG vaccination in healthy BCG-naÃ-ve subjects. Epigenetics, 2019, 14, 589-601.	1.3	35
14	In Vitro Granuloma Models of Tuberculosis: Potential and Challenges. Journal of Infectious Diseases, 2019, 219, 1858-1866.	1.9	57
15	Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE, 2019, 14, e0212858.	1.1	66
16	Polymorphisms in CARD8 and NLRP3 are associated with extrapulmonary TB and poor clinical outcome in active TB in Ethiopia. Scientific Reports, 2019, 9, 3126.	1.6	18
17	Corticosteroids protect infected cells against mycobacterial killing inÂvitro. Biochemical and Biophysical Research Communications, 2019, 511, 117-121.	1.0	8
18	Retention of EsxA in the Capsule-Like Layer of $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ Is Associated with Cytotoxicity and Is Counteracted by Lung Surfactant. Infection and Immunity, 2019, 87, .	1.0	17

#	Article	IF	CITATIONS
19	Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 3157.	2.2	32
20	Evaluation of the immunogenic capability of the BCG strains BCGÎ"BCG1419c and BCGÎ"BCG1416c in a three-dimensional human lung tissue model. Vaccine, 2018, 36, 1811-1815.	1.7	1
21	Topical benzoyl peroxide application on the shoulder reduces Propionibacterium acnes : a randomized study. Journal of Shoulder and Elbow Surgery, 2018, 27, 957-961.	1.2	53
22	A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis, 2018, 113, 231-238.	0.8	31
23	Addressing diversity in tuberculosis using multidimensional approaches. Journal of Internal Medicine, 2018, 284, 116-124.	2.7	6
24	Toward the understanding of human tuberculosis. Journal of Internal Medicine, 2018, 284, 113-115.	2.7	1
25	Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Scientific Reports, 2017, 7, 12305.	1.6	97
26	The Cording Phenotype of Mycobacterium tuberculosis Induces the Formation of Extracellular Traps in Human Macrophages. Frontiers in Cellular and Infection Microbiology, 2017, 7, 278.	1.8	34
27	Inhibition of Tissue Matrix Metalloproteinases Interferes with Mycobacterium tuberculosis-Induced Granuloma Formation and Reduces Bacterial Load in a Human Lung Tissue Model. Frontiers in Microbiology, 2017, 8, 2370.	1.5	39
28	Reduced susceptibility of clinical strains of Mycobacterium tuberculosis to reactive nitrogen species promotes survival in activated macrophages. PLoS ONE, 2017, 12, e0181221.	1.1	12
29	Trained immunity: a new avenue for tuberculosis vaccine development. Journal of Internal Medicine, 2016, 279, 337-346.	2.7	49
30	A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection. Journal of Visualized Experiments, 2015, , .	0.2	27
31	MicroRNA let-7 Modulates the Immune Response to Mycobacterium tuberculosis Infection via Control of A20, an Inhibitor of the NF-κB Pathway. Cell Host and Microbe, 2015, 17, 345-356.	5.1	230
32	Modeling <i>Mycobacterium tuberculosis</i> early granuloma formation in experimental human lung tissue. DMM Disease Models and Mechanisms, 2014, 7, 281-8.	1.2	53
33	Apoptotic Neutrophils Augment the Inflammatory Response to Mycobacterium tuberculosis Infection in Human Macrophages. PLoS ONE, 2014, 9, e101514.	1.1	20
34	Human Gene Variants Linked to Enhanced NLRP3 Activity Limit Intramacrophage Growth of Mycobacterium tuberculosis. Journal of Infectious Diseases, 2014, 209, 749-753.	1.9	49
35	A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability. Journal of Microbiological Methods, 2014, 106, 146-150.	0.7	13
36	Antimycobacterial activity of selected medicinal plants traditionally used in Sudan to treat infectious diseases. Journal of Ethnopharmacology, 2014, 157, 134-139.	2.0	21

#	Article	IF	CITATIONS
37	A mathematical model of the initial interaction between Mycobacterium tuberculosis and macrophages. Journal of Theoretical Biology, 2014, 342, 23-32.	0.8	8
38	Replication Rates of Mycobacterium tuberculosis in Human Macrophages Do Not Correlate with Mycobacterial Antibiotic Susceptibility. PLoS ONE, 2014, 9, e112426.	1.1	42
39	Vitamin D enhances IL- $\hat{\Pi}^2$ secretion and restricts growth of Mycobacterium tuberculosis in macrophages from TB patients. International Journal of Mycobacteriology, 2013, 2, 18-25.	0.3	27
40	Shortening the â€~shortâ€course' therapy– insights into host immunity may contribute to new treatment strategies for tuberculosis. Journal of Internal Medicine, 2013, 273, 368-382.	2.7	19
41	Common Genetic Variations in the NALP3 Inflammasome Are Associated with Delayed Apoptosis of Human Neutrophils. PLoS ONE, 2012, 7, e31326.	1.1	37
42	Resistance to First-Line Anti-TB Drugs Is Associated with Reduced Nitric Oxide Susceptibility in Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e39891.	1.1	22
43	TRIM27 Negatively Regulates NOD2 by Ubiquitination and Proteasomal Degradation. PLoS ONE, 2012, 7, e41255.	1.1	90
44	Inside or outside the phagosome? The controversy of the intracellular localization of Mycobacterium tuberculosis. Tuberculosis, 2012, 92, 113-120.	0.8	62
45	The Q705K Polymorphism in NLRP3 Is a Gain-of-Function Alteration Leading to Excessive Interleukin- $1\hat{l}^2$ and IL-18 Production. PLoS ONE, 2012, 7, e34977.	1.1	127
46	Human Macrophages Infected with a High Burden of ESAT-6-Expressing M. tuberculosis Undergo Caspase-1- and Cathepsin B-Independent Necrosis. PLoS ONE, 2011, 6, e20302.	1.1	114
47	Importance of Phagosomal Functionality for Growth Restriction of <i>Mycobacterium tuberculosis</i> in Primary Human Macrophages. Journal of Innate Immunity, 2011, 3, 508-518.	1.8	86
48	Validation of a Medium-Throughput Method for Evaluation of Intracellular Growth of Mycobacterium tuberculosis. Vaccine Journal, 2010, 17, 513-517.	3.2	34
49	Toll-like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent Ca2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor activation. Thrombosis and Haemostasis, 2010, 103, 398-407.	1.8	55
50	Combined Polymorphisms in Genes Encoding the Inflammasome Components NALP3 and CARD8 Confer Susceptibility to Crohn's Disease in Swedish Men. American Journal of Gastroenterology, 2009, 104, 1180-1188.	0.2	136
51	Leishmania donovani lipophosphoglycan inhibits phagosomal maturation via action on membrane rafts. Microbes and Infection, 2009, 11, 215-222.	1.0	49
52	Gene polymorphisms in the NALP3 inflammasome are associated with interleukinâ€1 production and severe inflammation: Relation to common inflammatory diseases?. Arthritis and Rheumatism, 2008, 58, 888-894.	6.7	109
53	Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Laboratory Investigation, 2008, 88, 1215-1226.	1.7	49
54	Incorporation of <i>Mycobacterium tuberculosis </i> Lipoarabinomannan into Macrophage Membrane Rafts Is a Prerequisite for the Phagosomal Maturation Block. Infection and Immunity, 2008, 76, 2882-2887.	1.0	102

#	Article	IF	CITATIONS
55	Inactivation of Cdc42 Is Necessary for Depolymerization of Phagosomal F-Actin and Subsequent Phagosomal Maturation. Journal of Immunology, 2007, 178, 7357-7365.	0.4	30
56	Leishmania donovani Requires Functional Cdc42 and Rac1 To Prevent Phagosomal Maturation. Infection and Immunity, 2006, 74, 2613-2618.	1.0	29
57	Differential effects of invasion by and phagocytosis of Salmonella typhimuriumon apoptosis in human macrophages: potential role of Rho-GTPases and Akt. Journal of Leukocyte Biology, 2003, 74, 620-629.	1.5	38
58	Proteasomal Degradation of Cytotoxic Necrotizing Factor 1-Activated Rac. Infection and Immunity, 2002, 70, 4053-4058.	1.0	83
59	Bacterial protein toxins targeting Rho GTPases. FEMS Microbiology Letters, 2000, 188, 1-6.	0.7	92
60	Identification of the C-terminal Part of BordetellaDermonecrotic Toxin as a Transglutaminase for Rho GTPases. Journal of Biological Chemistry, 1999, 274, 31875-31881.	1.6	64
61	Identification of the Region of Rho Involved in Substrate Recognition by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). Journal of Biological Chemistry, 1999, 274, 28999-29004.	1.6	62
62	Deamidation of Cdc42 and Rac by <i>Escherichia coli</i> Cytotoxic Necrotizing Factor 1: Activation of c-Jun N-Terminal Kinase in HeLa Cells. Infection and Immunity, 1999, 67, 496-503.	1.0	172
63	The Rho-deamidating Cytotoxic Necrotizing Factor 1 fromEscherichia coli Possesses Transglutaminase Activity. Journal of Biological Chemistry, 1998, 273, 13669-13674.	1.6	150
64	How Mycobacterium tuberculosis Manipulates Innate and Adaptive Immunity – New Views of an Old Topic. , 0, , .		5