Emilio Jos Palomares Gil

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4833951/emilio-jose-palomares-gil-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,097 65 256 119 h-index g-index citations papers 6.56 16,940 274 9.7 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
256	Chalcogen-substituted PCBM derivatives as ternary components in PM6:Y6 solar cells. <i>Materials Advances</i> , 2022 , 3, 1071-1078	3.3	
255	Joule-Heating Annealing to Increase Organic Solar Cells Performance: A Comparative Study. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 2552	2.6	
254	Influence of the Electron Selective Contact on the Interfacial Recombination in Fresh and Aged Perovskite Solar Cells. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 4545	2.6	1
253	Crystallinity and Molecular Packing of Small Molecules in Bulk-Heterojunction Organic Solar Cells. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 5683	2.6	
252	Tunable Carbon (IsPbI3 Quantum Dots for White LEDs. <i>Advanced Optical Materials</i> , 2021 , 9, 2001508	8.1	8
251	Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 144-153	5.8	21
250	Mechanisms of photoredox catalysts: the role of optical spectroscopy. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 638-665	5.8	9
249	Photocatalytic water splitting: advantages and challenges. Sustainable Energy and Fuels, 2021, 5, 4560-	45569	10
248	Use of organic bulk-heterojunction solar cells as selective contacts in wide band-gap perovskite solar cells: advantages and limitations. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13979-13985	13	3
247	Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient plb perovskite solar cells. <i>Energy and Environmental Science</i> , 2021 , 14, 3976-3985	35.4	33
246	Analysis of the Oxygen Passivation Effects on MAPbI and MAPbBr in Fresh and Aged Solar Cells by the Transient Photovoltage Technique. <i>ChemPlusChem</i> , 2021 , 86, 1316-1321	2.8	2
245	Inverted Hybrid Light-Emitting Diodes Using Carbon Dots as Selective Contacts: The Effect of Surface Ligands. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1388-1394	4	7
244	Analysis of the Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weights: Morphology versus Kinetics. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6853-6859	6.1	13
243	Benzothiadiazole Aryl-amine Based Materials as Efficient Hole Carriers in Perovskite Solar Cells. <i>ACS Applied Materials & Description of the Solar Cells and </i>	9.5	14
242	Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives. <i>Angewandte Chemie</i> , 2020 , 132, 5341-5345	3.6	6
241	Minimization of Carrier Losses for Efficient Perovskite Solar Cells through Structural Modification of Triphenylamine Derivatives. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5303-5307	16.4	14
240	Exceptional Long Electron Lifetime in Methylammonium Lead Iodide Perovskite Solar Cell Made from Aqueous Lead Nitrate Precursor. <i>Advanced Functional Materials</i> , 2020 , 30, 1909644	15.6	8

(2018-2020)

239	Self-assembled Zn phthalocyanine as a robust p-type selective contact in perovskite solar cells. <i>Nanoscale Horizons</i> , 2020 , 5, 1415-1419	10.8	5
238	Improved Carrier Collection and Hot Electron Extraction Across Perovskite, C, and TiO Interfaces. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1236-1246	16.4	27
237	Photovoltage/photocurrent transient techniques 2020 , 161-180		5
236	High Solar-to-Hydrogen Conversion Efficiency at pH 7 Based on a PV-EC Cell with an Oligomeric Molecular Anode. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 55856-55864	9.5	3
235	Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12506-12516	6.1	1
234	Interfacial recombination kinetics in aged perovskite solar cells measured using transient photovoltage techniques. <i>Nanoscale</i> , 2019 , 11, 20024-20029	7.7	17
233	Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. <i>Energy and Environmental Science</i> , 2019 , 12, 230-237	35.4	62
232	Direct white light emission from carbon nanodots (C-dots) in solution processed light emitting diodes. <i>Nanoscale</i> , 2019 , 11, 11315-11321	7.7	24
231	Flat Is Boring in Perovskite Light Detectors. <i>CheM</i> , 2019 , 5, 748-749	16.2	
230	Ionic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. <i>Energy and Environmental Science</i> , 2019 , 12, 1296-1308	35.4	102
229	Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. <i>Energy and Environmental Science</i> , 2019 , 12, 1309-1316	35.4	80
228	Supramolecular Coordination of Pb Defects in Hybrid Lead Halide Perovskite Films Using Truxene Derivatives as Lewis Base Interlayers. <i>ChemPhysChem</i> , 2019 , 20, 2702-2711	3.2	6
227	Energetic disorder in perovskite/polymer solar cells and its relationship with the interfacial carrier losses. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2019 , 377, 20180315	3	4
226	Hot electron injection into semiconducting polymers in polymer based-perovskite solar cells and their fate. <i>Nanoscale</i> , 2019 , 11, 23357-23365	7.7	2
225	Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. <i>Nanoscale</i> , 2018 , 10, 6155-6158	7.7	17
224	o,p-Dimethoxybiphenyl Arylamine Substituted Porphyrins as Hole-Transport Materials: Electrochemical, Photophysical, and Carrier Mobility Characterization. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 2064-2070	3.2	5
223	Benzothiadiazole Substituted Semiconductor Molecules for Organic Solar Cells: The Effect of the Solvent Annealing Over the Thin Film Hole Mobility Values. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13782-13789	3.8	11
222	Increasing the Efficiency of Organic Dye-Sensitized Solar Cells over 10.3% Using Locally Ordered Inverse Opal Nanostructures in the Photoelectrode. <i>Advanced Functional Materials</i> , 2018 , 28, 1706291	15.6	28

Solution Processed Bathocuproine for Organic Solar Cells. IEEE Nanotechnology Magazine, 2018, 17, 128-21.82 4 221 Second-Generation Azafullerene Monoadducts as Electron Acceptors in Bulk Heterojunction Solar 220 2.9 Cells. Synthesis, 2018, 50, 764-771 Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide 219 24.3 95 Perovskite Solar Cells. Accounts of Chemical Research, 2018, 51, 869-880 Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells. ACS Applied Energy 218 6.1 Materials, 2018, 1, 4203-4210 Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit 217 5.4 5 Voltage Approaching 1 Volt. Nanomaterials, 2018, 8, Organoboron donor-Eacceptor chromophores for small-molecule organic solar cells. Journal of 216 2.1 2 Materials Science: Materials in Electronics, 2018, 29, 16410-16415 High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high 215 22 alignment-level of the cathode selective contact. Journal of Materials Chemistry A, 2018, 6, 22534-22544 13 Reduced Energy Offsets and Low Energy Losses Lead to Efficient (~10% at 1 sun) Ternary Organic 214 20.1 14 Solar Cells. ACS Energy Letters, 2018, 3, 2418-2424 Visible and near-infrared organic photosensitizers comprising isoindigo derivatives as chromophores: synthesis, optoelectronic properties and factors limiting their efficiency in dye solar 213 13 17 cells. Journal of Materials Chemistry A, 2018, 6, 10074-10084 Fully Solution-Processed n-i-p-Like Perovskite Solar Cells with Planar Junction: How the Charge 48 212 24 Extracting Layer Determines the Open-Circuit Voltage. Advanced Materials, 2017, 29, 1604493 Side chain engineering of organic sensitizers for dye-sensitized solar cells: a strategy to improve 211 13 30 performances and stability. Journal of Materials Chemistry A, 2017, 5, 6122-6130 Pyrrolo[3,2-b]pyrrole as the Central Core of the Electron Donor for Solution-Processed Organic 2.8 210 20 Solar Cells. ChemPlusChem, 2017, 82, 1096-1104 Photo-Induced Charge Carrier Recombination Kinetics in Small Molecule Organic Solar Cells and the 21.8 209 23 Influence of Film Nanomorphology. Advanced Energy Materials, 2017, 7, 1601509 Selective Organic Contacts for Methyl Ammonium Lead Iodide (MAPI) Perovskite Solar Cells: Influence of Layer Thickness on Carriers Extraction and Carriers Lifetime. ACS Applied Materials 208 9.5 17 & Interfaces, **2017**, 9, 21599-21605 Understanding the Limiting Factors of Solvent-Annealed Small-Molecule Bulk-Heterojunction 8.3 8 207 Organic Solar Cells from a Chemical Perspective. ChemSusChem, 2017, 10, 3118-3134 Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of 206 3.6 6 carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648 Analysis of Photoinduced Carrier Recombination Kinetics in Flat and Mesoporous Lead Perovskite 205 20.1 32 Solar Cells. ACS Energy Letters, 2017, 2, 182-187 Visible-Light-Promoted Arylation Reactions Photocatalyzed by Bismuth(III) Oxide. European Journal 204 24 of Organic Chemistry, **2017**, 2017, 6986-6990

(2015-2017)

	203	solar cells with efficient energy transfer to increase the solar cell photocurrent. <i>RSC Advances</i> , 2017 , 7, 35525-35527	3.7	3
	202	Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells. <i>Scientific Reports</i> , 2017 , 7, 6101	4.9	76
:	2 01	Dithienylpyrazine-based photosensitizers: Effect of swapping a connecting unit on optoelectronic properties and photovoltaic performances. <i>Dyes and Pigments</i> , 2017 , 146, 352-360	4.6	10
	2 00	Light driven styrene epoxidation and hydrogen generation using H2O as an oxygen source in a photoelectrosynthesis cell. <i>Green Chemistry</i> , 2016 , 18, 255-260	10	14
•	199	Efficiency improvement using bis(trifluoromethane) sulfonamide lithium salt as a chemical additive in porphyrin based organic solar cells. <i>Nanoscale</i> , 2016 , 8, 17953-17962	7.7	21
:	198	High photo-current in solution processed organic solar cells based on a porphyrin core A-ED-EA as electron donor material. <i>Organic Electronics</i> , 2016 , 38, 330-336	3.5	13
	197	Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. <i>Inorganic Chemistry</i> , 2016 , 55, 7388-95	5.1	18
:	196	Low Open-Circuit Voltage Loss in Solution-Processed Small-Molecule Organic Solar Cells. <i>ACS Energy Letters</i> , 2016 , 1, 302-308	20.1	52
	195	CuSCN as selective contact in solution-processed small-molecule organic solar cells leads to over 7% efficient porphyrin-based device. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11009-11022	13	37
:	194	New solution-processable carbazole derivatives as deep blue emitters for organic light-emitting diodes. <i>RSC Advances</i> , 2016 , 6, 9247-9253	3.7	16
	193	Encapsulation of MEH-PPV:PCBM Hybrids in the Cores of Block Copolymer Micellar Assemblies: Photoinduced Electron Transfer in a Nanoscale Donor-Acceptor System. <i>Langmuir</i> , 2016 , 32, 329-37	4	13
	192	Charge recombination losses in thiophene-substituted porphyrin dye-sensitized solar cells. <i>Dyes and Pigments</i> , 2016 , 126, 147-153	4.6	15
	191	Decreasing Charge Losses in Perovskite Solar Cells Through mp-TiO2/MAPI Interface Engineering. <i>Chemistry of Materials</i> , 2016 , 28, 207-213	9.6	71
;	190	Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. <i>Nanomaterials</i> , 2016 , 6,	5.4	99
,	189	Increasing cell viability using Cd-free InP/ZnS@silica@layered double hydroxide Imaterials for biological labeling. <i>RSC Advances</i> , 2016 , 6, 31210-31213	3.7	4
	188	Carbon quantum dots as new hole transport material for perovskite solar cells. <i>Synthetic Metals</i> , 2016 , 222, 17-22	3.6	42
	187	Diarylamino-substituted tetraarylethene (TAE) as an efficient and robust hole transport material for 11% methyl ammonium lead iodide perovskite solar cells. <i>Chemical Communications</i> , 2015 , 51, 13980) ⁵ 2 ⁸	58
	186	Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy. <i>Nature Communications</i> , 2015 , 6, 7265	17.4	44

185	Efficient solution processed D1-A-D2-A-D1 small molecules bulk heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-b:4,5-b?]thiophene units. <i>Organic Electronics</i> , 2015 , 26, 36-47	3.5	16
184	Design, fabrication and charge recombination analysis of an interdigitated heterojunction nanomorphology in P3HT/PC(70)BM solar cells. <i>Nanoscale</i> , 2015 , 7, 13848-59	7.7	13
183	ADA based porphyrin for solution processed small molecule bulk heterojunction solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16287-16301	13	40
182	Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiOESeparation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis. <i>Journal of the American</i>	16.4	227
181	High photocurrent in oligo-thienylenevinylene-based small molecule solar cells with 4.9% solar-to-electrical energy conversion. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11340-11348	13	13
180	Efficient bulk heterojunction solar cells based on solution processed small molecules based on the same benzo[1,2-b:4, 5-b']thiophene unit as core donor and different terminal units. <i>Nanoscale</i> , 2015 , 7, 7692-703	7.7	16
179	Solvent Annealing Control of Bulk Heterojunction Organic Solar Cells with 6.6% Efficiency Based on a Benzodithiophene Donor Core and Dicyano Acceptor Units. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20871-20879	3.8	32
178	The influence of the mesoporous TiO2 scaffold on the performance of methyl ammonium lead iodide (MAPI) perovskite solar cells: charge injection, charge recombination and solar cell efficiency relationship. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22154-22161	13	31
177	H2 generation and sulfide to sulfoxide oxidation with H2O and sunlight with a model photoelectrosynthesis cell. <i>Coordination Chemistry Reviews</i> , 2015 , 304-305, 202-208	23.2	14
176	Increased short circuit current in an azafullerene-based organic solar cell. <i>Chemical Communications</i> , 2015 , 51, 1128-30	5.8	20
175	Synthesis, optical and electrochemical properties of the A-ED-EA porphyrin and its application as an electron donor in efficient solution processed bulk heterojunction solar cells. <i>Nanoscale</i> , 2015 , 7, 17	79783	42
174	Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. <i>Energy and Environmental Science</i> , 2015 , 8, 2010-2018	35.4	105
173	Indoline as electron donor unit in P ush P ull © rganic small molecules for solution processed organic solar cells: Effect of the molecular Ebridge on device efficiency. <i>Organic Electronics</i> , 2015 , 20, 15-23	3.5	14
172	A single atom change witches-on he solar-to-energy conversion efficiency of Zn-porphyrin based dye sensitized solar cells to 10.5%. <i>Energy and Environmental Science</i> , 2015 , 8, 1368-1375	35.4	60
171	Influence of the molecular weight and size dispersion of the electroluminescent polymer on the performance of air-stable hybrid light-emitting diodes. <i>ACS Applied Materials & Distriction</i> , 7, 1078-86	9.5	3
170	Solution processed organic solar cells based on ADD?DA small molecule with benzo[1,2-b:4,5-b?]dithiophene donor (D?) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. <i>Journal of Materials</i>	13	19
169	A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. <i>Scientific Reports</i> , 2014 , 4, 4033	4.9	140
168	Unambiguous determination of molecular packing in crystalline donor domains of small molecule solution processed solar cell devices using routine X-ray diffraction techniques. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3536	13	27

(2014-2014)

167	Small molecule BHJ solar cells based on DPP(TBFu)2 and diphenylmethanofullerenes (DPM): linking morphology, transport, recombination and crystallinity. <i>Nanoscale</i> , 2014 , 6, 5871-8	7.7	36
166	Quantum dot based molecular solar cells. <i>Coordination Chemistry Reviews</i> , 2014 , 263-264, 53-64	23.2	77
165	D-EA Porphyrin Employing an Indoline Donor Group for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014 , 118, 16504-16509	3.8	38
164	Lanthanide-doped nanoparticles for specific recognition of toll-like receptor (TLR) in human neutrophils. <i>RSC Advances</i> , 2014 , 4, 15040	3.7	1
163	Small molecule-based tandem solar cells with solution-processed and vacuum-processed photoactive layers. <i>Chemical Communications</i> , 2014 , 50, 5349-51	5.8	11
162	Panchromatic Ru(II) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17618-17627	13	47
161	Dual core quantum dots for highly quantitative ratiometric detection of trypsin activity in cystic fibrosis patients. <i>Nanoscale</i> , 2014 , 6, 13623-9	7.7	14
160	The Redox Pair Chemical Environment Influence on the Recombination Loss in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3878-3889	3.8	27
159	Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 178-83	16.4	98
158	Molecular dipole, dye structure and electron lifetime relationship in efficient dye sensitized solar cells based on donor ceptor organic sensitizers. <i>Organic Electronics</i> , 2014 , 15, 3162-3172	3.5	7
157	Thiocyanate-free ruthenium(II) sensitizers for dye-sensitized solar cells based on the cobalt redox couple. <i>ChemSusChem</i> , 2014 , 7, 2930-8	8.3	18
156	Novel 4 H -pyranylidene organic dyes for dye-sensitized solar cells: Effect of different heteroaromatic rings on the photovoltaic properties. <i>Organic Electronics</i> , 2014 , 15, 3237-3250	3.5	26
155	Light-driven organocatalysis using inexpensive, nontoxic Bi2O3 as the photocatalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9613-6	16.4	106
154	Use of Thienylenevinylene and Ethynyl Molecular Bridges in Organic Dyes for Dye-Sensitized Solar Cells: Implications for Device Performance. <i>ChemElectroChem</i> , 2014 , 1, 1126-1129	4.3	8
153	Photo-induced charge recombination kinetics in MAPbI(3-x)Cl(x) perovskite-like solar cells using low band-gap polymers as hole conductors. <i>Chemical Communications</i> , 2014 , 50, 14566-9	5.8	30
152	Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective and extracting contacts in device performance. <i>Organic Electronics</i> , 2014 , 15, 2756-2762	3.5	42
151	Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7655-61	16.4	116
150	Highly Efficient Dye-Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors. <i>Angewandte Chemie</i> , 2014 , 126, 182-187	3.6	9

149	Light-Driven Organocatalysis Using Inexpensive, Nontoxic Bi2O3 as the Photocatalyst. <i>Angewandte Chemie</i> , 2014 , 126, 9767-9770	3.6	23
148	Correlation between P3HT inter-chain structure and Jsc of P3HT:PC[70]BM blends for solar cells. <i>Microelectronics Reliability</i> , 2013 , 53, 560-564	1.2	18
147	Controlling dye aggregation, injection energetics and catalytic recombination in organic sensitizer based dye cells using a single electrolyte additive. <i>Energy and Environmental Science</i> , 2013 , 6, 3046	35.4	13
146	Nongeminate Recombination Dynamics D evice Voltage Relationship in Hybrid PbS Quantum Dot/C60 Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17470-17476	3.8	13
145	Charge carrier transport and contact selectivity limit the operation of PTB7-based organic solar cells of varying active layer thickness. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12345	13	79
144	High open circuit voltage in efficient thiophene-based small molecule solution processed organic solar cells. <i>Organic Electronics</i> , 2013 , 14, 2826-2832	3.5	30
143	Effect of porphyrin loading on performance of dye sensitized solar cells based on iodide/tri-iodide and cobalt electrolytes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13640	13	21
142	Understanding the Effect of Donor Layer Thickness and a MoO3 Hole Transport Layer on the Open-Circuit Voltage in Squaraine/C60 Bilayer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19866-19874	3.8	24
141	Light soaking effects on charge recombination and device performance in dye sensitized solar cells based on indolinelly clopenta dithiophene chromophores. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8994	13	24
140	Photoluminescent CdSe@CdS/2D as potential biocompatible materials. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 793-800	7.3	4
139	Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries. <i>Energy and Environmental Science</i> , 2013 , 6, 859	35.4	60
138	Effect of Polymer Crystallinity in P3HT:PCBM Solar Cells on Band Gap Trap States and Apparent Recombination Order. <i>Advanced Energy Materials</i> , 2013 , 3, 466-471	21.8	42
137	Ru(II) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7681	13	26
136	Improving CdSe Quantum Dot/Polymer Solar Cell Efficiency Through the Covalent Functionalization of Quantum Dots: Implications in the Device Recombination Kinetics. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13374-13381	3.8	30
135	The effect of the silica thickness on the enhanced emission in single particle quantum dots coated with gold nanoparticles. <i>RSC Advances</i> , 2013 , 3, 10691	3.7	14
134	Ti(IV) phthalocyanines for dye sensitized solar cells. <i>Journal of Porphyrins and Phthalocyanines</i> , 2013 , 17, 814-820	1.8	14
133	Advances in high efficiency dye sensitized solar cells based on Ru(II) free sensitizers and a liquid redox electrolyte. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24195		50
132	Formation of highly crystalline and texturized donor domains in DPP(TBFu)2:PC71BM SM-BHJ devices via solvent vapour annealing: implications for device function. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15175		65

(2011-2012)

131	Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7488-96	16.4	117
130	Small molecule solar cells based on a series of water-soluble zinc phthalocyanine donors. <i>Chemical Communications</i> , 2012 , 48, 6094-6	5.8	18
129	Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 11990-3	3.6	11
128	Measurements of Efficiency Losses in Blend and Bilayer-Type Zinc Phthalocyanine/C60 High-Vacuum-Processed Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16384-16390	3.8	30
127	Layered double hydroxides as carriers for quantum dots@silica nanospheres. Nanoscale, 2012, 4, 5409-	1 9 .7	18
126	Synergistic effect of ZnS outer layers and electrolyte methanol content on efficiency in TiO2/CdS/CdSe sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13076-80	3.6	18
125	Study of interface properties in CuPc based hybrid inorganic-organic solar cells. <i>Dalton Transactions</i> , 2012 , 41, 11419-23	4.3	6
124	Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. <i>Chemical Science</i> , 2012 , 3, 1177	9.4	23
123	Dye mediated charge recombination dynamics in nanocrystalline TiO2 dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12415		73
122	A continuity equation for the simulation of the current-voltage curve and the time-dependent properties of dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10285-99	3.6	45
121	Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals. <i>Advanced Functional Materials</i> , 2012 , 22, 1303-1310	15.6	72
120	Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. <i>Chemical Society Reviews</i> , 2011 , 40, 1635-46	58.5	492
119	Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor ceptor cells. <i>Energy and Environmental Science</i> , 2011 , 4, 1820	35.4	137
118	Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 4633	35.4	64
117	Tailored 3D interface for efficiency improvement in encapsulation-free hybrid light-emitting diodes. <i>ACS Applied Materials & Empty Interfaces</i> , 2011 , 3, 3248-51	9.5	3
116	The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3494	35.4	68
115	Multiplexed color encoded silica nanospheres prepared by stepwise encapsulating quantum dot/SiO2 multilayers. <i>Chemical Communications</i> , 2011 , 47, 7071-3	5.8	37
114	Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3547-58	3.6	62

113	Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. <i>Energy and Environmental Science</i> , 2011 , 4, 189-194	35.4	89
112	Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. <i>Chemical Science</i> , 2011 , 2, 1145	9.4	87
111	Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO2. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 4509-4526	2.3	118
110	Photo-induced charge recombination kinetics in low bandgap PCPDTBT polymer:CdSe quantum dot bulk heterojunction solar cells. <i>Chemical Science</i> , 2011 , 2, 2396	9.4	21
109	Utilization of a heterosupramolecular self-assembled trisporphyrin complex in dye-sensitised solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 528-534	35.4	13
108	Co-sensitized DSCs: dye selection criteria for optimized device Voc and efficiency. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1693-1696		64
107	The effect of selective contact electrodes on the interfacial charge recombination kinetics and device efficiency of organic polymer solar cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 6105-9	3.6	19
106	Novel ZnO nanostructured electrodes for higher power conversion efficiencies in polymeric solar cells. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 20871-6	3.6	27
105	Towards low-temperature preparation of air-stable hybrid light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4774		14
104	Performance and degradation of organic solar cells with different P3HT:PCBM[70] blend composition 2011 ,		1
103	QD-DnionEMulticode silica nanospheres with remarkable stability as pH sensors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17673		17
102	Influencing parameters for the achievement of porphyrin supramolecular architectures on mesoporous metal oxide nanoparticles. <i>Journal of Porphyrins and Phthalocyanines</i> , 2011 , 15, 592-597	1.8	2
101	Influence of P3HT:PCBM blend preparation on the active layer morphology and cell degradation. <i>Microelectronics Reliability</i> , 2011 , 51, 597-601	1.2	19
100	Charge transfer reactions in near IR absorbing small molecule solution processed organic bulk-heterojunction solar. <i>Organic Electronics</i> , 2011 , 12, 329-335	3.5	31
99	Materials, Nanomorphology, and Interfacial Charge Transfer Reactions in Quantum Dot/Polymer Solar Cell Devices. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3039-3045	6.4	69
98	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(p-tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3280-3286	3.8	105
97	Grafting porphyrins (face-to-edge/orthogonal versus face-to-face/parallel) to ZnO en route toward dye-sensitized solar cells. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 14671-8	3.4	30
96	Relation between the barrier interface and the built-in potential in pentacene/C60 solar cell. <i>Applied Physics Letters</i> , 2010 , 97, 013305	3.4	25

(2009-2010)

95	Dye structuretharge transfer process relationship in efficient ruthenium-dye based dye sensitized solar cells. <i>Energy and Environmental Science</i> , 2010 , 3, 805	35.4	60
94	Charge transfer kinetics in CdSe quantum dot sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 2819-21	3.6	43
93	Quantum Dot-Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1134-8	6.4	127
92	Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6755-6761	3.8	43
91	Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13047-51	3.6	30
90	A Bipyridine-Based Naked-EyelFluorimetric Cu2+ Chemosensor. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1360-1365	2.3	21
89	The Origin of the High Voltage in DPM12/P3HT Organic Solar Cells. <i>Advanced Functional Materials</i> , 2010 , 20, 2695-2700	15.6	67
88	Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells. <i>Electrochimica Acta</i> , 2010 , 56, 42-46	6.7	39
87	Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. <i>Chemistry - A European Journal</i> , 2009 , 15, 5130-7	4.8	150
86	Electron transfer dynamics in dye-sensitized solar cells utilizing oligothienylvinylene derivates as organic sensitizers. <i>ChemSusChem</i> , 2009 , 2, 344-9	8.3	12
85	Mercury optical fibre probe based on a modified cladding of sensitised Al2O3 nano-particles. <i>Sensors and Actuators B: Chemical</i> , 2009 , 143, 103-110	8.5	9
84	Diastereoselectivity and molecular recognition of mercury(II) ions. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 131-134	3.1	5
83	Multivariate calibration analysis of colorimetric mercury sensing using a molecular probe. <i>Analytica Chimica Acta</i> , 2009 , 633, 173-80	6.6	4
82	Extended & Formatic systems for energy conversion: phthalocyanines and porphyrins in molecular solar cells. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 645-651	1.8	16
81	Charge recombination studies in conformally coated trifluoroacetate/TiO2 modified dye sensitized solar cells (DSSC). <i>Journal of Materials Chemistry</i> , 2009 , 19, 5381		12
80	Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9644-7	3.6	22
79	Supramolecular interactions in dye-sensitised solar cells. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5818		31
78	Increasing the performance of cis-dithiocyanato(4,4?-dicarboxy-2,2?-bipyridine)(1,10-phenanthroline) ruthenium (II) based DSC using citric acid as co-adsorbant. <i>Energy and Environmental Science</i> , 2009 , 2, 1078	35.4	13

77	Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5016		90
76	Conduction mechanisms of P3HT: PCBM solar cell 2009 ,		2
75	Interfacial photo-induced charge transfer reactions in perylene imide dye sensitised solar cells. Journal of Materials Chemistry, 2008 , 18, 5802		42
74	A colorimetric molecular probe for Cu(II) ions based on the redox properties of Ru(II) phthalocyanines. <i>Journal of Materials Chemistry</i> , 2008 , 18, 176-181		40
73	Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2906-7	16.4	296
72	The role of para-alkyl substituents on meso-phenyl porphyrin sensitised TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1652		66
71	Interfacial charge recombination between e(-)-TiO2 and the I(-)/I3(-) electrolyte in ruthenium heteroleptic complexes: dye molecular structure-open circuit voltage relationship. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13558-67	16.4	120
70	The effect of molecular aggregates over the interfacial charge transfer processes on dye sensitized solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 153506	3.4	34
69	Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films. <i>Bioelectrochemistry</i> , 2008 , 74, 142-8	5.6	21
68	A Phenanthroline Heteroleptic Ruthenium Complex and Its Application to Dye-Sensitised Solar Cells. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1955-1958	2.3	21
67	Stepwise cosensitization of nanocrystalline TiO2 films utilizing Al2O3 layers in dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8259-63	16.4	133
66	Stepwise Cosensitization of Nanocrystalline TiO2 Films Utilizing Al2O3 Layers in Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2008 , 120, 8383-8387	3.6	28
65	A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. <i>Inorganica Chimica Acta</i> , 2008 , 361, 684-698	2.7	263
64	Functionalized titania nanoparticles for mercury scavenging. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2028-2032		12
63	Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6550-6560	3.8	821
62	Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3037-3044		152
61	Slow electron injection on Ru-Phthalocyanine sensitized TiO2. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9250-1	16.4	119
60	Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8358-62	16.4	461

59	Molecular Cosensitization for Efficient Panchromatic Dye-Sensitized Solar Cells. <i>Angewandte Chemie</i> , 2007 , 119, 8510-8514	3.6	130
58	A Multilayered Polymer Light-Emitting Diode Using a Nanocrystalline Metal-Oxide Film as a Charge-Injection Electrode. <i>Advanced Materials</i> , 2007 , 19, 683-687	24	115
57	Nanocrystalline dye-sensitized solar cells having maximum performance. <i>Progress in Photovoltaics:</i> Research and Applications, 2007 , 15, 1-18	6.8	479
56	Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6561-6567	3.8	241
55	Dynamic chemical devices: photoinduced electron transfer and its ion-triggered switching in nanomechanical butterfly-type bis(porphyrin)terpyridines. <i>Chemistry - A European Journal</i> , 2006 , 12, 193	3 1 -80	50
54	A Highly Sensitive Hybrid Colorimetric and Fluorometric Molecular Probe for Cyanide Sensing Based on a Subphthalocyanine Dye. <i>Advanced Functional Materials</i> , 2006 , 16, 1166-1170	15.6	120
53	Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. <i>Journal of Applied Physics</i> , 2006 , 100, 034510	2.5	54
52	Effect of energy disorder in interfacial kinetics of dye-sensitized solar cells with organic hole transport material. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 19406-11	3.4	66
51	Optical mercury sensing using a benzothiazolium hemicyanine dye. Organic Letters, 2006, 8, 3857-60	6.2	155
50	Determination of electron and hole energy levels in mesoporous nanocrystalline TiO2 solid-state dye solar cell. <i>Synthetic Metals</i> , 2006 , 156, 944-948	3.6	52
49	Laser flash photolysis of metal oxide supported vanadyl catalysts. Spectroscopic evidence for the ligand-to-metal charge-transfer state. <i>Journal of Materials Chemistry</i> , 2006 , 16, 216-220		9
48	Optical sensing of cyanide using hybrid biomolecular films. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 1239-1242	3.1	24
47	Photochemical energy conversion: from molecular dyads to solar cells. <i>Chemical Communications</i> , 2006 , 3279-89	5.8	146
46	The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 4616-23	3.4	299
45	Hybrid molecular materials for optoelectronic devices. <i>Journal of Materials Chemistry</i> , 2005 , 15, 3593		39
44	Triplet state photosensitization of nanocrystalline metal oxide electrodes by zinc-substituted cytochrome c: application to hydrogen evolution. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15120-6	16.4	35
43	Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3456-62	16.4	456
42	Reversible colorimetric probes for mercury sensing. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12351-6	16.4	298

41	Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. <i>Inorganic Chemistry</i> , 2005 , 44, 178-80	5.1	178
40	Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12525-33	3.4	365
39	Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2005 , 15, 412		72
38	Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide Electrodes. <i>Electroanalysis</i> , 2005 , 17, 1035-1041	3	36
37	Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5740	-4 ^{16.4}	216
36	Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films: Towards a Quantitative Structure E unction Relationship. <i>Angewandte Chemie</i> , 2005 , 117, 5886-5890	3.6	23
35	Solid film versus solution-phase charge-recombination dynamics of exTTF-bridge-C60 dyads. <i>Chemistry - A European Journal</i> , 2005 , 11, 7440-7	4.8	30
34	Alizarin Complexone on Nanocrystalline TiO2: A Heterogeneous Approach to Anion Sensing. <i>Advanced Functional Materials</i> , 2004 , 14, 111-115	15.6	101
33	Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. <i>Chemistry - A European Journal</i> , 2004 , 10, 595-602	4.8	210
32	Towards optimisation of electron transfer processes in dye sensitised solar cells. <i>Coordination Chemistry Reviews</i> , 2004 , 248, 1247-1257	23.2	239
31	Laser flash photolysis study of anthracene/viologen charge transfer complex in non-polar, dealuminated zeolites. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 1345-1349	3.6	17
30	Heterogeneous colorimetric sensor for mercuric salts. <i>Chemical Communications</i> , 2004 , 362-3	5.8	150
29	State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films. <i>Chemical Communications</i> , 2004 , 2112-3	5.8	136
28	Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5670-1	16.4	155
27	The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. <i>Journal of Applied Physics</i> , 2004 , 96, 6903-6907	2.5	179
26	Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5225-33	16.4	305
25	Comparative analysis of photovoltaic principles governing dye-sensitized solar cells and p-n junctions 2004 , 5215, 49		3
24	Transient absorption and photovoltage characterization of dye-sensitized solar cells 2004,		2

(2000-2003)

23	Al/MCM-41 Aluminosilicate. Generation of Long-Lived Viologen Radicals. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 14319-14325	3.4	24
22	Tigliane diterpenes from the latex of Euphorbia obtusifolia with inhibitory activity on the mammalian mitochondrial respiratory chain. <i>Journal of Ethnopharmacology</i> , 2003 , 85, 279-82	5	13
21	Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. <i>Journal of the American Chemical Society</i> , 2003 , 125, 475-82	16.4	967
20	Flexible dye sensitised nanocrystalline semiconductor solar cells. <i>Chemical Communications</i> , 2003 , 3008-	- 9 .8	117
19	Photochemistry of chiral pentacoordinated Al salen complexes. Chiral recognition in the quenching of photogenerated tetracoordinated Al salen transient by alkenes. <i>Photochemical and Photobiological Sciences</i> , 2003 , 2, 386-392	4.2	3
18	Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. <i>Chemical Communications</i> , 2002 , 1464-5	5.8	229
17	Stereochemical memory in the temperature-dependent photodenitrogenation of bridgehead-substituted DBH-type azoalkanes: inhibition of inverted-housane formation in the diazenyl diradical through the mass effect (inertia) and steric hindrance. <i>Journal of the American</i>	16.4	14
16	Observation of azo chromophore fluorescence and phosphorescence emissions from DBH by applying exclusively the orbital confinement effect in siliceous zeolites devoid of charge-balancing cations. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7264-5	16.4	20
15	Chiral N-alkyl-2,4,6-triphenylpyridiniums as enantioselective triplet photosensitizers. laser flash photolysis and preparative studies. <i>Journal of Organic Chemistry</i> , 2002 , 67, 5184-9	4.2	4
14	Photochemistry of nickel salen based complexes and relevance to catalysis. <i>New Journal of Chemistry</i> , 2002 , 26, 405-410	3.6	16
13	Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. <i>Chemical Communications</i> , 2002 , 1100-1	5.8	58
12	Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. <i>Chemical Communications</i> , 2002 , 1518-9	5.8	42
11	Laser flash photolysis study of azides derived from Cr(III) and Mn(III) salen complexes. <i>New Journal of Chemistry</i> , 2002 , 26, 1646-1650	3.6	6
10	A bis-benzimidazole-derived N, S macrocycle as sensor for transition metal ions in aqueous solution. <i>Chemical Physics Letters</i> , 2001 , 350, 240-246	2.5	8
9	Characterization of germanium site distribution in zeolite ITQ-7 by photoluminescence. <i>Chemical Communications</i> , 2001 , 2148-9	5.8	9
8	Naphthalene Included within All-Silica Zeolites: Influence of the Host on the Naphthalene Photophysics. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9973-9979	3.4	57
7	Laser flash photolysis study of Jacobsen catalyst and related manganese(III) salen complexes. Relevance to catalysis. <i>Journal of the American Chemical Society</i> , 2001 , 123, 7074-80	16.4	39
6	Photoluminescence of supported vanadia catalysts: linear correlation between the vanadyl emission wavelength and the isoelectric point of the oxide support. <i>Catalysis Letters</i> , 2000 , 69, 217-221	2.8	22

5	Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept: □Case of Anthracene Incorporated in Zeolites. <i>Journal of the American Chemical Society</i> , 2000 , 122, 6520-6521	16.4	88
4	Observation of a 390-nm Emission Band Associated with Framework Ti in Mesoporous Titanosilicates. <i>Chemistry of Materials</i> , 2000 , 12, 3068-3072	9.6	37
3	Jatrophane and tigliane diterpenes from the latex of Euphorbia obtusifolia. <i>Phytochemistry</i> , 1999 , 52, 479-485	4	36
2	Shelf lifetime analysis of organic solar cells combining frequency and time resolved techniques. Sustainable Energy and Fuels,	5.8	2
1	Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. <i>ACS Catalysis</i> , 13140-13148	13.1	5