List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833539/publications.pdf Version: 2024-02-01

SONIALEVI

#	Article	IF	CITATIONS
1	Massive iron accumulation in PKAN-derived neurons and astrocytes: light on the human pathological phenotype. Cell Death and Disease, 2022, 13, 185.	2.7	19
2	Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Frontiers in Oncology, 2022, 12, 868351.	1.3	26
3	Pathogenic mechanism and modeling of neuroferritinopathy. Cellular and Molecular Life Sciences, 2021, 78, 3355-3367.	2.4	7
4	The relevance of mitochondrial DNA variants fluctuation during reprogramming and neuronal differentiation of human iPSCs. Stem Cell Reports, 2021, 16, 1953-1967.	2.3	8
5	Mitochondrial Ferritin: Its Role in Physiological and Pathological Conditions. Cells, 2021, 10, 1969.	1.8	17
6	Neuronal Ablation of CoA Synthase Causes Motor Deficits, Iron Dyshomeostasis, and Mitochondrial Dysfunctions in a CoPAN Mouse Model. International Journal of Molecular Sciences, 2020, 21, 9707.	1.8	9
7	Harmful Iron-Calcium Relationship in Pantothenate kinase Associated Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3664.	1.8	19
8	Stem Cell Modeling of Neuroferritinopathy Reveals Iron as a Determinant of Senescence and Ferroptosis during Neuronal Aging. Stem Cell Reports, 2019, 13, 832-846.	2.3	46
9	Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals, 2019, 12, 27.	1.7	60
10	Mitochondrial Ferritin Is a Hypoxia-Inducible Factor 1α-Inducible Gene That Protects from Hypoxia-Induced Cell Death in Brain. Antioxidants and Redox Signaling, 2019, 30, 198-212.	2.5	24
11	Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. Advances in Experimental Medicine and Biology, 2019, 1173, 153-177.	0.8	18
12	Peroxiredoxin-2: A Novel Regulator of Iron Homeostasis in Ineffective Erythropoiesis. Antioxidants and Redox Signaling, 2018, 28, 1-14.	2.5	33
13	Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Biochemistry, 2017, 56, 3900-3912.	1.2	48
14	Unexplained isolated hyperferritinemia without iron overload. American Journal of Hematology, 2017, 92, 338-343.	2.0	7
15	Data demonstrating the role of peroxiredoxin 2 as important anti-oxidant system in lung homeostasis. Data in Brief, 2017, 15, 376-381.	0.5	0
16	Peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension. Free Radical Biology and Medicine, 2017, 112, 376-386.	1.3	28
17	Coenzyme A corrects pathological defects in human neurons of <scp>PANK</scp> 2â€associated neurodegeneration. EMBO Molecular Medicine, 2016, 8, 1197-1211.	3.3	74
18	Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control. Scientific Reports, 2016, 6, 33432.	1.6	23

#	Article	IF	CITATIONS
19	H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis. Free Radical Biology and Medicine, 2015, 89, 614-623.	1.3	26
20	The Pathogenesis of Cardiomyopathy in Friedreich Ataxia. PLoS ONE, 2015, 10, e0116396.	1.1	106
21	Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiology of Disease, 2015, 81, 144-153.	2.1	61
22	Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism. Neurobiology of Disease, 2015, 81, 134-143.	2.1	50
23	A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiology of Disease, 2015, 81, 119-133.	2.1	35
24	Peroxiredoxin-2: A Novel Factor Involved in Iron Homeostasis. Blood, 2015, 126, 406-406.	0.6	1
25	Iron availability is increased in individual human ovarian follicles in close proximity to an endometrioma compared with distal ones. Human Reproduction, 2014, 29, 577-583.	0.4	70
26	Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Frontiers in Pharmacology, 2014, 5, 99.	1.6	141
27	Iron Homeostasis in Peripheral Nervous System, Still a Black Box?. Antioxidants and Redox Signaling, 2014, 21, 634-648.	2.5	30
28	Role of intracellular labile iron, ferritin, and antioxidant defence in resistance of chronically adapted Jurkat T cells to hydrogen peroxide. Free Radical Biology and Medicine, 2014, 68, 87-100.	1.3	31
29	Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. Journal of Experimental Medicine, 2013, 210, 1779-1791.	4.2	39
30	Effects of mitochondrial ferritin overexpression in normal and sideroblastic erythroid progenitors. British Journal of Haematology, 2013, 161, 726-737.	1.2	10
31	Skin fibroblasts from pantothenate kinase-associated neurodegeneration patients show altered cellular oxidative status and have defective iron-handling properties. Human Molecular Genetics, 2012, 21, 4049-4059.	1.4	44
32	Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Human Molecular Genetics, 2012, 21, 5294-5305.	1.4	87
33	Study of FTMT and ABCA4 genes in a patient affected by age-related macular degeneration: identification and analysis of new mutations. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1021-9.	1.4	24
34	Relation of Cytosolic Iron Excess to Cardiomyopathy of Friedreich's Ataxia. American Journal of Cardiology, 2012, 110, 1820-1827.	0.7	50
35	Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation. Haematologica, 2011, 96, 1424-1432.	1.7	31
36	Ferritin-H and a Phytotherapeutic, Alone or Combined, Reprogram RBC Precursor Cells From SCD Patients to Produce Levels of Fetal Hemoglobin That Constitute a Phenotypic Cure for Sickle Cell As Well As Providing Resistance to Malaria and a Probable Treatment for Beta-Thalassemia. Blood, 2011, 118, 903-903.	0.6	3

#	Article	IF	CITATIONS
37	Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiology of Disease, 2010, 37, 77-85.	2.1	72
38	Regional and cellular distribution of mitochondrial ferritin in the mouse brain. Journal of Neuroscience Research, 2010, 88, 3133-3143.	1.3	14
39	Sequence Variations in Mitochondrial Ferritin: Distribution in Healthy Controls and Different Types of Patients. Genetic Testing and Molecular Biomarkers, 2010, 14, 793-796.	0.3	9
40	Mutant Ferritin L-chains That Cause Neurodegeneration Act in a Dominant-negative Manner to Reduce Ferritin Iron Incorporation. Journal of Biological Chemistry, 2010, 285, 11948-11957.	1.6	48
41	Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 783-792.	1.1	248
42	The role of iron in mitochondrial function. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 629-636.	1.1	151
43	Mitochondrial Ferritin in the Substantia Nigra in Restless Legs Syndrome. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1193-1199.	0.9	68
44	The Effects of Mitochondrial Ferritin Expression in Normal and Sideroblastic Erythropoiesis Blood, 2009, 114, 736-736.	0.6	0
45	Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia. Human Molecular Genetics, 2008, 18, 1-11.	1.4	128
46	Mitochondrial Ferritin Expression in Adult Mouse Tissues. Journal of Histochemistry and Cytochemistry, 2007, 55, 1129-1137.	1.3	147
47	Analysis of ferritin genes in Parkinson disease. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1450-6.	1.4	23
48	Defective targeting of hemojuvelin to plasma membrane is a common pathogenetic mechanism in juvenile hemochromatosis. Blood, 2007, 109, 4503-4510.	0.6	78
49	RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood, 2007, 109, 3552-3559.	0.6	156
50	The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood, 2007, 110, 1353-1358.	0.6	287
51	The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins. Acta Neuropathologica, 2007, 114, 163-173.	3.9	130
52	Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia, 2006, 20, 549-555.	3.3	118
53	Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiology of Disease, 2006, 23, 644-652.	2.1	37
54	Microelectronic DNA chip for hereditary hyperferritinemia cataract syndrome, a model for large-scale analysis of disorders of iron metabolism. Human Mutation, 2006, 27, 201-208.	1.1	38

#	Article	IF	CITATIONS
55	Ferritin Heavy Chain Stimulates HbS-to-HbF Switching in Erythroid Precursor Cells from Sickle Cell Patients Blood, 2006, 108, 790-790.	0.6	1
56	Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Practice and Research in Clinical Haematology, 2005, 18, 265-276.	0.7	73
57	Unique Iron Binding and Oxidation Properties of Human Mitochondrial Ferritin: A Comparative Analysis with Human H-chain Ferritin. Journal of Molecular Biology, 2005, 347, 543-554.	2.0	79
58	Recombinant human hepcidin expressed in Escherichia coli isolates as an iron containing protein. Blood Cells, Molecules, and Diseases, 2005, 35, 177-181.	0.6	29
59	Mitochondrial Ferritin Expression and Clonality of Hematopoiesis in Patients with Refractory Anemia with Ringed Sideroblasts Blood, 2005, 106, 3444-3444.	0.6	7
60	The expression of human mitochondrial ferritin rescues respiratory function infrataxin-deficient yeast. Human Molecular Genetics, 2004, 13, 2279-2288.	1.4	100
61	Ferroportin gene silencing induces iron retention and enhances ferritin synthesis in human macrophages. British Journal of Haematology, 2004, 127, 598-603.	1.2	27
62	Blotting Analysis of Native IRP1:Â A Novel Approach to Distinguish the Different Forms of IRP1 in Cells and Tissuesâ€. Biochemistry, 2004, 43, 195-204.	1.2	22
63	Mitochondrial ferritin. International Journal of Biochemistry and Cell Biology, 2004, 36, 1887-1889.	1.2	119
64	C29G in the iron-responsive element of l-ferritin: a new mutation associated with hyperferritinemia-cataract. Blood Cells, Molecules, and Diseases, 2004, 33, 31-34.	0.6	14
65	Crystal Structure and Biochemical Properties of the Human Mitochondrial Ferritin and its Mutant Ser144Ala. Journal of Molecular Biology, 2004, 340, 277-293.	2.0	111
66	Case report: a subject with a mutation in the ATG start codon of L-ferritin has no haematological or neurological symptoms. Journal of Medical Genetics, 2004, 41, e81-e81.	1.5	30
67	Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood, 2004, 103, 2377-2383.	0.6	112
68	Flow Cytometry Evaluation of Erythroid Dysplasia in Patients with Myelodysplastic Syndrome Blood, 2004, 104, 2365-2365.	0.6	0
69	Defining metal ion inhibitor interactions with recombinant human H- and L-chain ferritins and site-directed variants: an isothermal titration calorimetry study. Journal of Biological Inorganic Chemistry, 2003, 8, 489-497.	1.1	44
70	Multiple Pathways for Mineral Core Formation in Mammalian Apoferritin. The Role of Hydrogen Peroxideâ€. Biochemistry, 2003, 42, 3142-3150.	1.2	151
71	Role of iron and ferritin in TNFα-induced apoptosis in HeLa cells. FEBS Letters, 2003, 537, 187-192.	1.3	66
72	Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. Blood, 2003, 101, 1996-2000.	0.6	181

#	Article	IF	CITATIONS
73	Identification of two novel mutations in the 5'-untranslated region of H-ferritin using denaturing high performance liquid chromatography scanning. Haematologica, 2003, 88, 1110-6.	1.7	23
74	Human Mitochondrial Ferritin Expressed in HeLa Cells Incorporates Iron and Affects Cellular Iron Metabolism. Journal of Biological Chemistry, 2002, 277, 22430-22437.	1.6	139
75	Mitochondrial Ferritin: A New Player in Iron Metabolism. Blood Cells, Molecules, and Diseases, 2002, 29, 376-383.	0.6	165
76	Ferritin, iron homeostasis, and oxidative damage1,2 1Guest Editor: Mario Comporti 2This article is part of a series of reviews on "Iron and Cellular Redox Status.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 33, 457-463.	1.3	452
77	A novel deletion of the l -ferritin iron-responsive element responsible for severe hereditary hyperferritinaemia-cataract syndrome. British Journal of Haematology, 2002, 116, 667-670.	1.2	26
78	Genetic hyperferritinaemia and reticuloendothelial iron overload associated with a three base pair deletion in the coding region of the ferroportin gene (SLC11A3). British Journal of Haematology, 2002, 119, 539-546.	1.2	80
79	Double-Gradient Denaturing Gradient Gel Electrophoresis Assay for Identification of L-Ferritin Iron-responsive Element Mutations Responsible for Hereditary Hyperferritinemia-Cataract Syndrome: Identification of the New Mutation C14G. Clinical Chemistry, 2001, 47, 491-497.	1.5	32
80	Clinical, biochemical and molecular findings in a series of families with hereditary hyperferritinaemia-cataract syndrome. British Journal of Haematology, 2001, 115, 334-340.	1.2	61
81	A Human Mitochondrial Ferritin Encoded by an Intronless Gene. Journal of Biological Chemistry, 2001, 276, 24437-24440.	1.6	344
82	A new mutation (G51C) in the iron-responsive element (IRE) of l -ferritin associated with hyperferritinaemia-cataract syndrome decreases the binding affinity of the mutated IRE for iron-regulatory proteins. British Journal of Haematology, 2000, 108, 480-482.	1.2	39
83	Relationship between TNF-α and iron metabolism in differentiating human monocytic THP-1 cells. British Journal of Haematology, 2000, 110, 978-984.	1.2	52
84	Early Embryonic Lethality of H Ferritin Gene Deletion in Mice. Journal of Biological Chemistry, 2000, 275, 3021-3024.	1.6	232
85	Overexpression of Wild Type and Mutated Human Ferritin H-chain in HeLa Cells. Journal of Biological Chemistry, 2000, 275, 25122-25129.	1.6	222
86	Functional and Immunological Analysis of Recombinant Mouse H- and L-Ferritins from Escherichia coli. Protein Expression and Purification, 2000, 19, 212-218.	0.6	99
87	Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces an iron-deficient phenotype. FEBS Letters, 1999, 460, 149-152.	1.3	71
88	Transient overexpression of human H- and L-ferritin chains in COS cells. Biochemical Journal, 1998, 330, 315-320.	1.7	43
89	Analysis of Ferritins in Lymphoblastoid Cell Lines and in the Lens of Subjects With Hereditary Hyperferritinemia-Cataract Syndrome. Blood, 1998, 91, 4180-4187.	0.6	85
90	Analysis of Ferritins in Lymphoblastoid Cell Lines and in the Lens of Subjects With Hereditary Hyperferritinemia-Cataract Syndrome. Blood, 1998, 91, 4180-4187.	0.6	1

#	Article	lF	CITATIONS
91	Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation. Biochemical Journal, 1997, 322, 461-468.	1.7	49
92	Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochemical Journal, 1996, 314, 139-144.	1.7	125
93	Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. Biochemical Journal, 1996, 317, 467-473.	1.7	92
94	Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. Journal of Inorganic Biochemistry, 1995, 58, 59-68.	1.5	187
95	The Role of the L-Chain in Ferritin Iron Incorporation. Journal of Molecular Biology, 1994, 238, 649-654.	2.0	170
96	Chemico-Physical and Functional Differences Between H and L Chains of Human Ferritin. Advances in Experimental Medicine and Biology, 1994, 356, 13-21.	0.8	2
97	Iron Oxidation in Sheep, Horse and Recombinant Human Apoferritins. Advances in Experimental Medicine and Biology, 1994, 356, 23-30.	0.8	5
98	Human ferritin H-chains can be obtained in non-assembled stable forms which have ferroxidase activity. FEBS Letters, 1993, 336, 309-312.	1.3	14
99	Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin, and site-directed mutants. Biochemistry, 1993, 32, 9362-9369.	1.2	114
100	Structure, function, and evolution of ferritins. Journal of Inorganic Biochemistry, 1992, 47, 161-174.	1.5	306
101	Functional roles of the ferritin receptors of human liver, hepatoma, lymphoid and erythroid cells. Journal of Inorganic Biochemistry, 1992, 47, 219-227.	1.5	64
102	Antibodies for denatured human H-ferritin stain only reticuloendothelial cells within the bone marrow. British Journal of Haematology, 1992, 81, 118-124.	1.2	13
103	Binding and suppressive activity of human recombinant ferritins on erythroid cells. American Journal of Hematology, 1992, 39, 264-268.	2.0	15
104	Influence of site-directed modifications on the formation of iron cores in ferritin. Journal of Molecular Biology, 1991, 221, 1443-1452.	2.0	162
105	Structural and Functional Studies of Human Ferritin H and L Chains1. Current Studies in Hematology and Blood Transfusion, 1991, 58, 127-131.	0.2	35
106	Characteristics of the Membrane Receptor for Human H-Ferritin. Current Studies in Hematology and Blood Transfusion, 1991, 58, 164-170.	0.2	11
107	Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: a link between ferritin ferroxidase activity and biological function Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 770-774.	3.3	82
108	H and L ferritins in myocardium in iron overload. American Journal of Cardiology, 1991, 68, 1233-1236.	0.7	10

SONIA LEVI

#	Article	IF	CITATIONS
109	Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature, 1991, 349, 541-544.	13.7	758
110	Mechanisms of Ferritin Iron Incorporation: A Study with Recombinant and Mutant Human Ferritins. , 1991, , 339-348.		0
111	Structural studies on recombinant human ferritins. Biochemical Society Transactions, 1990, 18, 1028-1029.	1.6	9
112	A mutational analysis of the epitopes of recombinant human H-ferritin. BBA - Proteins and Proteomics, 1990, 1039, 197-203.	2.1	16
113	Iron detoxifying activity of ferritin. FEBS Letters, 1990, 277, 119-122.	1.3	79
114	Ultrastructure of Two Mutants in the H-Subunit of Recombinant Human Ferritin: Ordered Arrays Indicate Altered Surface Properties. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 288-289.	0.0	0
115	Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry, 1989, 28, 5179-5184.	1.2	132
116	Development of an immunoassay for all human isoferritins, and its application to serum ferritin evaluation. Clinica Chimica Acta, 1989, 184, 197-206.	0.5	30
117	Identification of the ferroxidase centre in ferritin. FEBS Letters, 1989, 254, 207-210.	1.3	278
118	Characterization of human ferritin H chain synthetized in Escherichia coli. Gene, 1987, 51, 269-274.	1.0	58
119	Measurement of Ferritin-Bearing Lymphocytes in Man. Preliminary Studies on the Use of Monoclonal Antibodies Specific for the L and H Subunits of Ferritin. Tumori, 1987, 73, 37-41.	0.6	5
120	Characteristics of a ferritinâ€binding protein present in human serum. British Journal of Haematology, 1987, 65, 489-493.	1.2	30
121	Human serum ferritin Gâ€peptide is recognized by anti‣ ferritin subunit antibodies and concanavalinâ€A. British Journal of Haematology, 1987, 65, 235-237.	1.2	2
122	Human serum ferritin G-peptide is recognized by anti-L ferritin subunit antibodies and concanavalin-A. British Journal of Haematology, 1987, 65, 235-237.	1.2	64
123	Characteristics of ferritins in human milk secretions: Similarities to serum and tissue isoferritins. Clinica Chimica Acta, 1986, 161, 201-208.	0.5	20
124	Regulation of ferritin synthesis in malignant and non-malignant lymphoid cells. Biochemical and Biophysical Research Communications, 1986, 139, 652-657.	1.0	21
125	Ferritins in malignant and non-malignant lymphoid cells. British Journal of Haematology, 1986, 62, 105-110.	1.2	19
126	Immunochemical characterization of human liver and heart ferritins with monoclonal antibodies. BBA - Proteins and Proteomics, 1986, 872, 61-71.	2.1	92

SONIA LEVI

#	Article	IF	CITATIONS
127	Multiple mechanisms of iron-induced ferritin synthesis in HeLa cells. Biochemical and Biophysical Research Communications, 1985, 133, 314-321.	1.0	117
128	Serum ferritin in type I diabetes. Clinica Chimica Acta, 1985, 152, 165-170.	0.5	11
129	Properties of ferritin from the earthworm Octolasium complanatum. BBA - Proteins and Proteomics, 1984, 787, 264-269.	2.1	14
130	Crystallographic data for horse heart ferritin. FEBS Letters, 1984, 165, 63-66.	1.3	6
131	PKAN hiPS-Derived Astrocytes Show Impairment of Endosomal Trafficking: A Potential Mechanism Underlying Iron Accumulation. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4