Chong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833151/publications.pdf Version: 2024-02-01

Сноме Ц

#	Article	IF	CITATIONS
1	High Capacity Hydrogen Storage in Ca Decorated Graphyne: A First-Principles Study. Journal of Physical Chemistry C, 2011, 115, 23221-23225.	3.1	210
2	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie - International Edition, 2019, 58, 2029-2033.	13.8	208
3	Co and Pt Dualâ€Singleâ€Atoms with Oxygenâ€Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials, 2021, 33, e2003327.	21.0	123
4	Anomalous doping effect in black phosphorene using first-principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 16351-16358.	2.8	109
5	Ultrahigh Photocatalytic CO ₂ Reduction Efficiency and Selectivity Manipulation by Singleâ€Tungstenâ€Atom Oxide at the Atomic Step of TiO ₂ . Advanced Materials, 2022, 34, e2109074.	21.0	107
6	Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study. Nanoscale Research Letters, 2016, 11, 77.	5.7	99
7	Magnetism of zigzag edge phosphorene nanoribbons. Applied Physics Letters, 2014, 105, .	3.3	97
8	Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance. Applied Catalysis B: Environmental, 2019, 245, 648-655.	20.2	69
9	Au-Decorated Silicene: Design of a High-Activity Catalyst toward CO Oxidation. Journal of Physical Chemistry C, 2013, 117, 483-488.	3.1	63
10	Interlayer coupling and external electric field tunable electronic properties of a 2D type-l α-tellurene/MoS ₂ heterostructure. Journal of Materials Chemistry C, 2018, 6, 10256-10262.	5.5	56
11	Ultrahigh Photocatalytic Rate at a Singleâ€Metalâ€Atomâ€Oxide. Advanced Materials, 2019, 31, e1903491.	21.0	53
12	Band gap and band alignment prediction of nitride-based semiconductors using machine learning. Journal of Materials Chemistry C, 2019, 7, 3238-3245.	5.5	48
13	Anderson Localization in 2D Amorphous MoO _{3â€<i>x</i>} Monolayers for Electrochemical Ammonia Synthesis. ChemCatChem, 2019, 11, 5412-5416.	3.7	37
14	Stability and electronic properties of the O-terminated Cu2O(111) surfaces: First-principles investigation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2994-2998.	2.1	36
15	Strong Quantum Size Effects in Pb(111) Thin Films Mediated by Anomalous Friedel Oscillations. Physical Review Letters, 2010, 105, 066101.	7.8	35
16	Activation of MoS ₂ Basal Planes for Hydrogen Evolution by Zinc. Angewandte Chemie, 2019, 131, 2051-2055.	2.0	29
17	First-principles investigation of mechanical and electronic properties of MNNi3 (M=Zn, Mg, or Cd). Journal of Applied Physics, 2009, 105, 123921.	2.5	26
18	Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure. Carbon, 2018, 140, 164-170.	10.3	25

CHONG LI

#	Article	IF	CITATIONS
19	Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. Organic Electronics, 2019, 67, 89-94.	2.6	23
20	Structural, electronic and magnetic properties of 3d transition metals embedded graphene-like carbon nitride sheet: A DFT + U study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1373-1377.	2.1	20
21	A type-II C ₂ N/α-Te van der Waals heterojunction with improved optical properties by external perturbation. Physical Chemistry Chemical Physics, 2019, 21, 21753-21760.	2.8	20
22	Strain engineering for C2N/Janus monochalcogenides van der Waals heterostructures: Potential applications for photocatalytic water splitting. Applied Surface Science, 2021, 536, 147845.	6.1	17
23	Electronic and optical properties of quaternary alloy GaAsBiN lattice-matched to GaAs. Optics Express, 2014, 22, 30633.	3.4	15
24	Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study. Tribology Letters, 2016, 61, 1.	2.6	15
25	Formation of a large gap quantum spin Hall phase in a 2D trigonal lattice with three p-orbitals. Nanoscale, 2018, 10, 5496-5502.	5.6	13
26	Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Research, 2020, 13, 3019-3024.	10.4	13
27	Selection rule of preferred doping site for n-type oxides. Applied Physics Letters, 2012, 100, 262109.	3.3	10
28	Creation of half-metallic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi> -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice. Physical Review B, 2017, 96, .</mml:math 	3.2	10
29	Spin-gapless and -gapped band structures of non-compensated bonding BN/Graphene bilayer. Journal Physics D: Applied Physics, 2020, 53, 505101.	2.8	10
30	Influence of indium cluster on the high and constant background electron density in ternary In _x Ga _{1â^'x} N alloys. Applied Physics Letters, 2012, 101, 062102.	3.3	8
31	Intrinsic spin dependent and ferromagnetic stability on edge saturated zigzag graphene-like carbon-nitride nanoribbons. Applied Physics Letters, 2014, 104, 172111.	3.3	8
32	Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption. Nanoscale Research Letters, 2015, 10, 60.	5.7	8
33	Reversible direct-indirect band transition in alloying TMDs heterostructures via band engineering. Journal of Physics Condensed Matter, 2019, 31, 435503.	1.8	7
34	Electric field induced spin resolved graphene p–n junctions on magnetic Janus VSeTe monolayer. Journal Physics D: Applied Physics, 2022, 55, 365303.	2.8	7
35	Even–odd oscillation of bandgaps in GeP ₃ nanoribbons and a tunable 1D lateral homogenous heterojunction. Physical Chemistry Chemical Physics, 2019, 21, 275-280.	2.8	6
36	Magnetic evolution and anomalous Wilson transition in diagonal phosphorene nanoribbons driven by strain. Nanotechnology, 2015, 26, 295402.	2.6	5

CHONG LI

#	Article	IF	CITATIONS
37	Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Physical Chemistry Chemical Physics, 2015, 17, 30270-30278.	2.8	4
38	Realization of asymmetric spin splitting Dirac cones in antiferromagnetic graphene/CrAs2/graphene heterotrilayer. Journal of Physics Condensed Matter, 2020, 32, 435503.	1.8	4
39	Surface alloy formation of noble adatoms adsorbed on Si(111)-sqrt {3}imes sqrt {3} –Pb surface: a first-principles study. Journal of Physics Condensed Matter, 2011, 23, 265001.	1.8	3
40	Strong quantum size effects in transition metal silicide ultrathin films: Critical role of Fermi surface nesting. Journal of Applied Physics, 2012, 112, 104313.	2.5	3
41	Electronic and magnetic properties of N-N split substitution in GaAs: A hybrid density functional study. AIP Advances, 2015, 5, 077187.	1.3	3
42	Uniaxial strain induced symmetry lowering and valleys drift in MoS ₂ . New Journal of Physics, 2021, 23, 053007.	2.9	3
43	Self-Assembled Ti Quantum Wire on Zigzag Graphene Nanoribbons with One Edge Saturated. Journal of Physical Chemistry C, 2012, 116, 24824-24828.	3.1	2
44	Strong Valence Electrons Dependent and Logical Relations of Elemental Impurities in 2D Binary Semiconductor: a Case of GeP3 Monolayer from Ab Initio Studies. Nanoscale Research Letters, 2019, 14, 307.	5.7	2
45	FIRST-PRINCIPLES INVESTIGATION OF STRUCTURAL AND ELECTRONIC PROPERTIES OF THE RECONSTRUCTED ZnO\$(000ar 1)\$ and \$(0001) (sqrt{3}imessqrt{3})-R30^circ\$ SURFACES. Modern Physics Letters B, 2010, 24, 2803-2814.	1.9	1
46	Ferromagnetic, antiferromagnetic, and Peierls distortion states in IVA-VA nanoribbons. Applied Physics Letters, 2019, 115, .	3.3	1
47	Magnetism arising from Mexican-hat-like band dispersion in the WSe2/SnS2 heterostructure via interlayer strain. Physical Chemistry Chemical Physics, 2020, 22, 21961-21967.	2.8	1
48	Magnetism of zigzag edge phosphorene nanoribbons. , 0, .		1
49	Unusual titanium diffusion on a diamond(100) 2×1 surface at submonolayer coverage. Europhysics Letters, 2010, 92, 46005.	2.0	0
50	Kinetic and relativistic effects on the surface alloy formation of submonolayer Au adsorbed on Si(111)-3×3-Pb surface. Applied Physics Letters, 2011, 99, 211912.	3.3	0
51	Nanofriction oscillation driven by sublayer indirect contact of silicon tip sliding on few-layer graphene. AIP Advances, 2019, 9, 055023.	1.3	0