Sander J Zwart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833117/publications.pdf

Version: 2024-02-01

304602 223716 2,944 47 22 46 h-index citations g-index papers 47 47 47 3332 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 2004, 69, 115-133.	2.4	691
2	Water for Food Water for Life., 0,,.		277
3	Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, 2016, 37, 3995-4014.	1.3	196
4	Impacts of climate change on rice production in Africa and causes of simulated yield changes. Global Change Biology, 2018, 24, 1029-1045.	4.2	173
5	Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 2019, 173, 172-208.	3. 2	157
6	The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling, 2012, 64, 23-29.	5. 3	123
7	SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agricultural Water Management, 2007, 89, 287-296.	2.4	106
8	Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management, 2008, 95, 11-24.	2.4	105
9	Parasitic weed incidence and related economic losses in rice in Africa. Agriculture, Ecosystems and Environment, 2016, 235, 306-317.	2.5	103
10	RiceAtlas, a spatial database of global rice calendars and production. Scientific Data, 2017, 4, 170074.	2.4	101
11	Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches. Agricultural Systems, 2014, 123, 1-11.	3.2	93
12	A global benchmark map of water productivity for rainfed and irrigated wheat. Agricultural Water Management, 2010, 97, 1617-1627.	2.4	91
13	Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 2020, 143, 103667.	1.7	62
14	A simple model for simulating heat induced sterility in rice as a function of flowering time and transpirational cooling. Field Crops Research, 2014, 156, 303-312.	2.3	58
15	A remote sensing-based irrigation performance assessment: a case study of the Office du Niger in Mali. Irrigation Science, 2010, 28, 371-385.	1.3	50
16	Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE, 2018, 13, e0192642.	1.1	42
17	Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling. Science of the Total Environment, 2020, 709, 136165.	3.9	41
18	WATPRO: A remote sensing based model for mapping water productivity of wheat. Agricultural Water Management, 2010, 97, 1628-1636.	2.4	40

#	Article	IF	CITATIONS
19	Towards ecosystem accounting: a comprehensive approach to modelling multiple hydrological ecosystem services. Hydrology and Earth System Sciences, 2015, 19, 4377-4396.	1.9	39
20	Spatial modelling of rice yield losses in Tanzania due to bacterial leaf blight and leaf blast in a changing climate. Climatic Change, 2016, 135, 569-583.	1.7	35
21	FAILURE AND SUCCESS FACTORS OF IRRIGATION SYSTEM DEVELOPMENTS: A CASE STUDY FROM THE OUÉM AND ZOU VALLEYS IN BENIN. Irrigation and Drainage, 2014, 63, 328-339.	IÉ 0.8	28
22	The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso. Agricultural Water Management, 2021, 247, 106758.	2.4	27
23	Contributions of lateral flow and groundwater to the spatio-temporal variation of irrigated rice yields and water productivity in a West-African inland valley. Agricultural Water Management, 2015, 152, 286-298.	2.4	26
24	A spatially explicit approach to assess the suitability for rice cultivation in an inland valley in central Benin. Agricultural Water Management, 2016, 177, 95-106.	2.4	22
25	Analysing spatial–temporal changes in rice cultivation practices in the Senegal River Valley using MODIS time-series and the PhenoRice algorithm. International Journal of Applied Earth Observation and Geoinformation, 2019, 75, 15-28.	1.4	20
26	Thirty years of water management research for rice in sub-Saharan Africa: Achievement and perspectives. Field Crops Research, 2022, 283, 108548.	2.3	20
27	Diversity of inland valleys and opportunities for agricultural development in Sierra Leone. PLoS ONE, 2017, 12, e0180059.	1.1	19
28	Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary. Hydrology and Earth System Sciences, 2011, 15, 1257-1271.	1.9	18
29	Rice Intensification in a Changing Environment: Impact on Water Availability in Inland Valley Landscapes in Benin. Water (Switzerland), 2018, 10, 74.	1.2	15
30	Predictors determining the potential of inland valleys for rice production development in West Africa. Applied Geography, 2018, 96, 86-97.	1.7	15
31	Mapping land suitability for informal, small-scale irrigation development using spatial modelling and machine learning in the Upper East Region, Ghana. Science of the Total Environment, 2022, 803, 149959.	3.9	14
32	Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin. Agricultural Water Management, 2017, 192, 257-270.	2.4	12
33	Ecological sustainability and environmental risks of agricultural intensification in inland valleys in Benin. Environment, Development and Sustainability, 2019, 21, 1869-1890.	2.7	12
34	Comparative analysis of the pysebal model and lysimeter for estimating actual evapotranspiration of soybean crop in Adana, Turkey. International Journal of Engineering and Geosciences, 2020, 5, 60-65.	1.8	12
35	Contrasting changes in hydrological processes of the Volta River basin under global warming. Hydrology and Earth System Sciences, 2022, 26, 1481-1506.	1.9	12
36	Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS International Journal of Geo-Information, 2020, 9, 484.	1.4	11

#	Article	IF	CITATIONS
37	Characterization of the mangrove swamp rice soils along the Great Scarcies River in Sierra Leone using principal component analysis. Catena, 2018, 163, 54-62.	2.2	10
38	Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin. Science of the Total Environment, 2018, 610-611, 1581-1589.	3.9	10
39	Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers' Mitigation Measures in the Sudan-Sahel Zone. Sustainability, 2019, 11, 79.	1.6	10
40	Monitoring spatial-temporal variations of surface areas of small reservoirs in Ghana's Upper East Region using Sentinel-2 satellite imagery and machine learning. Physics and Chemistry of the Earth, 2022, 125, 103082.	1.2	10
41	A New Conceptual Framework for Integrating Earth Observation in Large-scale Wetland Management in East Africa. Wetlands, 2021, 41, 1.	0.7	9
42	Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes. Agricultural Systems, 2022, 200, 103429.	3.2	9
43	Modelling the forest and woodland-irrigation nexus in tropical Africa: A case study in Benin. Agriculture, Ecosystems and Environment, 2016, 230, 105-115.	2.5	6
44	SEBAL For Detecting Spatial Variation Of Water Productivity For Wheat In The Yaqui Valley, Mexico. AIP Conference Proceedings, 2006, , .	0.3	4
45	Filling in the gaps: first record of Sousa teuszii in Benin (Gulf of Guinea: Africa). Marine Biodiversity Records, 2014, 7, .	1.2	4
46	A geospatial database of drought occurrence in inland valleys in Mali, Burkina Faso and Nigeria. Data in Brief, 2018, 19, 2008-2014.	0.5	4
47	A geospatial dataset of inland valleys in four zones in Benin, Sierra Leone and Mali. Data in Brief, 2019, 23, 103699.	0.5	2