
Samuel J Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS. Astrophysical Journal, 2015, 813, 53.	1.6	124
2	COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON Ω _{<i>M</i>} AND Ïf ₈ WITH A TWO-DIMENSIONAL ANALYSIS. Astrophysical Journal, 2013, 765, 74.	1.6	114
3	COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. II. FULL COSMOLOGICAL PARAMETER CONSTRAINTS FROM TOMOGRAPHY. Astrophysical Journal, 2016, 824, 77.	1.6	92
4	Recovering redshift distributions with cross-correlations: pushing the boundaries. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3307-3318.	1.6	75
5	Spectroscopic needs for imaging dark energy experiments. Astroparticle Physics, 2015, 63, 81-100.	1.9	66
6	Clustering-based redshift estimation: comparison to spectroscopic redshifts. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3500-3511.	1.6	51
7	Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies. Astronomical Journal, 2018, 155, 1.	1.9	51
8	the-wizz: clustering redshift estimation for everyone. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3576-3589.	1.6	46
9	Inferring the redshift distribution of the cosmic infrared backgrounda Monthly Notices of the Royal Astronomical Society, 2015, 446, 2696-2708.	1.6	38
10	Tomographic magnification of Lyman-break galaxies in the Deep Lens Survey. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2489-2499.	1.6	35
11	The LSST DESC DC2 Simulated Sky Survey. Astrophysical Journal, Supplement Series, 2021, 253, 31.	3.0	32
12	Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST). Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	29
13	Improved photometric redshifts via enhanced estimates of system response, galaxy templates and magnitude priors. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2766-2777.	1.6	26
14	GALAXY-MASS CORRELATIONS ON 10 Mpc SCALES IN THE DEEP LENS SURVEY. Astrophysical Journal, 2012, 759, 101.	1.6	21
15	Approximating Photo-z PDFs for Large Surveys. Astronomical Journal, 2018, 156, 35.	1.9	19
16	Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope. Nature Reviews Physics, 2019, 1, 450-462.	11.9	17
17	Constraints on Cosmology and Baryonic Feedback with the Deep Lens Survey Using Galaxy–Galaxy and Galaxy–Mass Power Spectra. Astrophysical Journal, 2019, 870, 111.	1.6	17
18	Photometric Redshifts with the LSST. II. The Impact of Near-infrared and Near-ultraviolet Photometry. Astronomical Journal, 2020, 159, 258.	1.9	11

SAMUEL J SCHMIDT

#	Article	IF	CITATIONS
19	Estimating Sky Level. Publications of the Astronomical Society of the Pacific, 2018, 130, 084504.	1.0	10
20	A Composite Likelihood Approach for Inference under Photometric Redshift Uncertainty. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6
21	The impact of tomographic redshift bin width errors on cosmological probes. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1029-1042.	1.6	5
22	Forecasting the potential of weak lensing magnification to enhance LSST large-scale structure analyses. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
23	Blending and obscuration in weak-lensing magnification. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4964-4975.	1.6	3
24	Galaxy blending effects in deep imaging cosmic shear probes of cosmology. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5905-5926.	1.6	2