Liang-Liang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4833026/publications.pdf

Version: 2024-02-01

76196 51492 7,892 118 40 86 citations h-index g-index papers 120 120 120 8269 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740
2	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
3	Catalytic reactions within the cavity of coordination cages. Chemical Society Reviews, 2019, 48, 4707-4730.	18.7	313
4	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 2363-2372.	6.6	310
5	A tubular europium–organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. Chemical Communications, 2013, 49, 11557.	2.2	286
6	Metal–organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm, 2016, 18, 193-206.	1.3	235
7	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	5.3	204
8	Lanthanide metal–organic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. Journal of Materials Chemistry A, 2015, 3, 12777-12785.	5.2	171
9	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	5.8	159
10	Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. Journal of Materials Chemistry A, 2018, 6, 24486-24495.	5.2	159
11	A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. Journal of Materials Chemistry A, 2015, 3, 24016-24021.	5.2	154
12	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	7.2	136
13	Two Solvent-Dependent Zinc(II) Supramolecular Isomers: Rare kgd and Lonsdaleite Network Topologies Based on a Tripodal Flexible Ligand. Crystal Growth and Design, 2011, 11, 5182-5187.	1.4	133
14	Metal–Organic Framework Derived Porous Hollow Co ₃ O ₄ /N–C Polyhedron Composite with Excellent Energy Storage Capability. ACS Applied Materials & Diterfaces, 2017, 9, 10602-10609.	4.0	127
15	Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 2014, 53, 7086-7088.	1.9	118
16	A multi-aromatic hydrocarbon unit induced hydrophobic metal–organic framework for efficient C ₂ /C ₁ hydrocarbon and oil/water separation. Journal of Materials Chemistry A, 2017, 5, 1168-1175.	5.2	113
17	Two nanocage anionic metal–organic frameworks with rht topology and {[M(H ₂ O) ₆] ₆ } ¹²⁺ charge aggregation for rapid and selective adsorption of cationic dyes. Chemical Communications, 2014, 50, 14674-14677.	2.2	110
18	Luminescent Terbium-Organic Framework Exhibiting Selective Sensing of Nitroaromatic Compounds (NACs). Crystal Growth and Design, 2015, 15, 2589-2592.	1.4	107

#	Article	IF	Citations
19	Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Dioxide William Packed Bed Contactor: Mass Transfer Dioxide Research Packed Bed Contactor: Mass Transfer Dioxid	1.8	105
20	Unprecedented Solvent-Dependent Sensitivities in Highly Efficient Detection of Metal Ions and Nitroaromatic Compounds by a Fluorescent Barium Metal–Organic Framework. Inorganic Chemistry, 2016, 55, 1782-1787.	1.9	87
21	Porous Lanthanide–Organic Frameworks: Control over Interpenetration, Gas Adsorption, and Catalyst Properties. Crystal Growth and Design, 2013, 13, 3154-3161.	1.4	80
22	Multifunctional lanthanide–organic frameworks for fluorescent sensing, gas separation and catalysis. Dalton Transactions, 2016, 45, 3743-3749.	1.6	74
23	A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Transactions, 2016, 45, 61-65.	1.6	73
24	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	6.6	73
25	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	6.6	70
26	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	5.2	68
27	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie - International Edition, 2017, 56, 14622-14626.	7.2	65
28	An Aminoâ€Functionalized Metalâ€Organic Framework, Based on a Rare Ba ₁₂ (COO) ₁₈ (NO ₃) ₂ Cluster, for Efficient C ₃ /C ₂ /C ₁ Separation and Preferential Catalytic Performance. Chemistry - A European Journal, 2018, 24, 2137-2143.	1.7	61
29	Bright-yellow to orange-red thermochromic luminescence of an Agl6–ZnII2 heterometallic aggregate. Dalton Transactions, 2013, 42, 3528.	1.6	60
30	Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel Metal-Organic Framework (MOF) through Metal-Ion Metathesis in a Single-Crystal-to-Single-Crystal Fashion. Inorganic Chemistry, 2014, 53, 10649-10653.	1.9	60
31	Cooperative Sieving and Functionalization of Zr Metal–Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers. ACS Applied Materials & Linkers, 2019, 11, 22390-22397.	4.0	60
32	A fluorine-functionalized microporous In-MOF with high physicochemical stability for light hydrocarbon storage and separation. Inorganic Chemistry Frontiers, 2018, 5, 2445-2449.	3.0	59
33	Stable Metal–Organic Frameworks: Stable Metal–Organic Frameworks: Design, Synthesis, and Applications (Adv. Mater. 37/2018). Advanced Materials, 2018, 30, 1870277.	11.1	55
34	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	1.1	53
35	Pentiptycene-Based Luminescent Cu (II) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds (NACs). Scientific Reports, 2016, 6, 20672.	1.6	51
36	Fluorescence turn-on detection of uric acid by a water-stable metal–organic nanotube with high selectivity and sensitivity. Journal of Materials Chemistry C, 2017, 5, 601-606.	2.7	48

#	Article	IF	CITATIONS
37	Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 2015, 3, 21545-21552.	5.2	46
38	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16682-16690.	7.2	45
39	Cadmium–Organic Coordination Polymers Based on N-Donor Ligands and Small Anions: Syntheses, Crystal Structures, and Photoluminescent Properties. Crystal Growth and Design, 2012, 12, 5649-5654.	1.4	43
40	Terahertz wave reference-free phase imaging for identification of explosives. Applied Physics Letters, 2008, 92, 091117.	1.5	42
41	Achieving a Rare Breathing Behavior in a Polycatenated 2 D to 3 D Net through a Pillarâ€Ligand Extension Strategy. Chemistry - A European Journal, 2014, 20, 649-652.	¹ 1.7	38
42	Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor. Electrochimica Acta, 2018, 284, 202-210.	2.6	38
43	Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chemical Science, 2019, 10, 3529-3534.	3.7	38
44	Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Research, 2021, 14, 444-449.	5.8	36
45	A Stable Amino-Functionalized Interpenetrated Metal–Organic Framework Exhibiting Gas Selectivity and Pore-Size-Dependent Catalytic Performance. Inorganic Chemistry, 2017, 56, 13634-13637.	1.9	34
46	Ferroceneâ€Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 25567-25574.	7.2	34
47	Five MOFs with different topologies based on anthracene functionalized tetracarboxylic acid: syntheses, structures, and properties. CrystEngComm, 2014, 16, 2917-2928.	1.3	33
48	Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism. Scientific Reports, 2016, 6, 21951.	1.6	33
49	Expanded Porous Metal–Organic Frameworks by SCSC: Organic Building Units Modifying and Enhanced Gas-Adsorption Properties. Inorganic Chemistry, 2016, 55, 6420-6425.	1.9	33
50	Effect of Functional Groups on the Adsorption of Light Hydrocarbons in ⟨i⟩fmj⟨/i⟩-type Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 832-838.	1.4	33
51	Synthesis of Two Triarylboron-Functionalized Metal–Organic Frameworks: In Situ Decarboxylic Reaction, Structure, Photoluminescence, and Gas Adsorption Properties. Inorganic Chemistry, 2014, 53, 11206-11212.	1.9	32
52	Optimizing crystallinity and porosity of hierarchical Ni(OH) < sub > 2 < /sub > through conformal transformation of metal†"organic framework template for supercapacitor applications. CrystEngComm, 2018, 20, 4313-4320.	1.3	32
53	Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie - International Edition, 2021, 60, 20166-20172.	7.2	32
54	Crystal Structure Diversities Based on 4,4′-(2,3,6,7-Tetramethoxyanthracene-9,10-diyl)dibenzoic Acid: From 2D Layer to 3D Net Framework. Crystal Growth and Design, 2012, 12, 6215-6222.	1.4	31

#	Article	IF	CITATIONS
55	Solvent-controlled Cd(ii) metal–organic frameworks constructed from a tetrapodal silicon-based linker. RSC Advances, 2012, 2, 5543.	1.7	30
56	Syntheses, structures and characteristics of four metal–organic coordination polymers based on 5-hydroxyisophthalic acid and N-containing auxiliary ligands. CrystEngComm, 2013, 15, 9578.	1.3	29
57	Investigation of the effect of pore size on gas uptake in two fsc metal–organic frameworks. Chemical Communications, 2014, 50, 4911.	2.2	29
58	Stepwise Synthesis of Diverse Isomer MOFs via Metal-Ion Metathesis in a Controlled Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2017, 17, 4084-4089.	1.4	29
59	Solvent-induced framework-interpenetration isomers of Cu MOFs for efficient light hydrocarbon separation. Inorganic Chemistry Frontiers, 2018, 5, 2408-2412.	3.0	27
60	A Zn Metal–Organic Framework with High Stability and Sorption Selectivity for CO2. Inorganic Chemistry, 2015, 54, 10587-10592.	1.9	26
61	Stepwise Construction of a Ag ^I ₉ –Cu ^{II} ₄ Heterometallic Cluster Incorporating Two Unusual Vertexâ€Shared Trigonalâ€Bipyramidal Silver Polyhedra. Chemistry - an Asian Journal, 2012, 7, 1558-1561.	1.7	25
62	A non-interpenetrating lead-organic framework with large channels based on 1D tube-shaped SBUs. Chemical Communications, 2017, 53, 5694-5697.	2.2	25
63	Solution-processed single crystal microsheets of a novel dimeric phthalocyanine-involved triple-decker for high-performance ambipolar organic field effect transistors. Chemical Communications, 2017, 53, 12754-12757.	2.2	25
64	Crystal structures, topologies and luminescent properties of three Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) coordination networks based on naphthalene-2,6-dicarboxylic acid and different bis(imidazole) linkers. RSC Advances, 2015, 5, 16190-16198.	1.7	24
65	A "Strongly―Self-Catenated Metal–Organic Framework with the Highest Topological Density among 3,4-Coordinated Nets. Inorganic Chemistry, 2013, 52, 10732-10734.	1.9	23
66	Amphipathic Pentiptycene-Based Water-Resistant Cu-MOF for Efficient Oil/Water Separation. Inorganic Chemistry, 2019, 58, 5384-5387.	1.9	23
67	Fluorescent selectivity for small molecules of three Zn-MOFs with different topologies based on a tetracarboxylate ligand. RSC Advances, 2015, 5, 62982-62988.	1.7	22
68	Tuning the Dimensionality of Interpenetration in a Pair of Framework-Catenation Isomers To Achieve Selective Adsorption of CO ₂ and Fluorescent Sensing of Metal lons. Inorganic Chemistry, 2015, 54, 6084-6086.	1.9	22
69	Synthesis, structure, and properties of a 3D porous Zn(<scp>ii</scp>) MOF constructed from a terpyridine-based ligand. RSC Advances, 2016, 6, 16575-16580.	1.7	21
70	Terahertz Wave Generation From Noble Gas Plasmas Induced by a Wavelength-Tunable Femtosecond Laser. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 299-304.	2.0	20
71	Crystal structures, topological analysis and luminescence properties of three coordination polymers based on a semi-rigid ligand and N-donor ligand linkers. New Journal of Chemistry, 2016, 40, 5957-5965.	1.4	19
72	A 2D porous pentiptycene-based MOF for efficient detection of Ba ²⁺ and selective adsorption of dyes from water. Inorganic Chemistry Frontiers, 2018, 5, 1314-1320.	3.0	19

#	Article	IF	CITATIONS
73	Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization. Advanced Science, 2019, 6, 1901855.	5.6	19
74	A phase feature extraction technique for terahertz reflection spectroscopy. Applied Physics Letters, 2008, 92, 221106.	1.5	18
75	Rational Design and Synthesis of Hexanuclear Rare Earth the - a Metal–Organic Frameworks Platform Based on RE ₆ O ₄ (OH) ₄ (COO) ₈ Clusters. Crystal Growth and Design, 2019, 19, 1509-1513.	1.4	18
76	Optical property and spectroscopy studies on the explosive 2,4,6-trinitro-1,3,5-trihydroxybenzene in the terahertz range. Applied Physics Letters, 2008, 92, .	1.5	17
77	Structural and property comparison between the diâ€piperidinyl―and diâ€pyrrolidinylâ€substituted perylene tetracarboxylic diimides. Journal of Physical Organic Chemistry, 2011, 24, 621-629.	0.9	17
78	Solvent modulated assembly of two Zn metal–organic frameworks: syntheses, luminescence, and gas adsorption properties. CrystEngComm, 2015, 17, 6591-6597.	1.3	16
79	Dielectric and Lattice Vibrational Spectra of Cu ₂ O Hollow Spheres in the Range of 1–10 THz. Journal of Physical Chemistry C, 2011, 115, 10333-10337.	1.5	15
80	<i>C</i> _{3<i>i(i)</i>} â€Symmetric Octanuclear Cadmium Cages: Doubleâ€Anionâ€Templated Synthesis, Formation Mechanism, and Properties. Chemistry - A European Journal, 2012, 18, 16525-16530.	' 1.7	15
81	A luminescent ytterbium(III)-organic framework for highly selective sensing of 2,4,6-trinitrophenol. Journal of Solid State Chemistry, 2018, 262, 186-190.	1.4	15
82	Fabrication of (4, 10) and (4, 12)-Connected Multifunctional Zirconium Metal–Organic Frameworks for the Targeted Adsorption of a Guest Molecule. Inorganic Chemistry, 2020, 59, 695-704.	1.9	15
83	Two novel isostructural Ln (III) 3D frameworks supported by 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid and in situ generated oxalate: Syntheses, characterization and photoluminescent property. Inorganic Chemistry Communication, 2012, 26, 51-55.	1.8	14
84	Anion-controlled formation of two silver lamella frameworks based on in situ ligand reaction. CrystEngComm, 2013, 15, 8877.	1.3	14
85	An imidazole functionalized copper(II)â€organic framework for highly selective sensing of picric acid and metal ions in water. Applied Organometallic Chemistry, 2020, 34, e5803.	1.7	14
86	Construction of hexanuclear Ce(III) metalâ^'porphyrin frameworks through linker induce strategy for CO2 capture and conversion. Catalysis Today, 2021, 374, 38-43.	2.2	14
87	Flexible Zirconium MOFs as Bromineâ€Nanocontainers for Bromination Reactions under Ambient Conditions. Angewandte Chemie, 2017, 129, 14814-14818.	1.6	13
88	Phase characterization in broadband THz wave detection through field-induced second harmonic generation. Optics Express, 2012, 20, 75.	1.7	12
89	Syntheses, Crystal Structures, and Properties of Two 2-Fold Interpenetrating Metal–Organic Frameworks Based on a Trigonal Rigid Ligand. Crystal Growth and Design, 2014, 14, 6521-6527.	1.4	12
90	Excitation-wavelength-dependent terahertz wave modulation via preformed air plasma. Applied Physics Letters, 2018, 112, .	1.5	12

#	Article	IF	CITATIONS
91	Post-Synthetic Modification of Zirconium Metal–Organic Frameworks for Adsorption and Separation of Light Hydrocarbons. Crystal Growth and Design, 2020, 20, 4882-4885.	1.4	12
92	Metalâ€Ion Metathesis and Properties of Triarylboronâ€Functionalized Metal–Organic Frameworks. Chemistry - an Asian Journal, 2015, 10, 1535-1540.	1.7	10
93	Syntheses, Crystal Structures, and Properties of Four Metal–Organic Complexes Based on 1,4,5,6,7,7-Hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic Acid. Crystal Growth and Design, 2015, 15, 4198-4205.	1.4	10
94	Ultrahigh Modulation Enhancement in All-Optical Si-Based THz Modulators Integrated with Gold Nanobipyramids. Nano Letters, 2022, 22, 1541-1548.	4.5	9
95	Synthesis of a Difunctionalized Pillar[5]arene with Hydroxyl and Amino Groups at A1/A2 Positions. European Journal of Organic Chemistry, 2019, 2019, 2508-2512.	1.2	8
96	High-κ Polyimide-Based Dielectrics by Introducing a Functionalized Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 3412-3419.	1.9	8
97	Two birds with one stone: Self-assembly of metal–organic coordination complexes with discrete metallamacrocycle and 1D zigzag chain based on a flexible dicarboxylate ligand. Inorganic Chemistry Communication, 2013, 28, 75-80.	1.8	7
98	Crystal structure and temperature-dependent fluorescent property of a 2D cadmium (II) complex based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid. Journal of Molecular Structure, 2013, 1038, 73-77.	1.8	7
99	Four novel Co(II) metal-organic frameworks based on semi-rigid ligand and their secondary building units transformation. Journal of Molecular Structure, 2019, 1197, 87-95.	1.8	7
100	Synthesis, structure, and magnetism of three manganese-organic framework with PtS topology. Science China Chemistry, 2014, 57, 1507-1513.	4.2	6
101	Excitation-wavelength scaling of terahertz radiation in alkali vapor plasmas. Applied Physics Letters, 2017, 111, .	1.5	6
102	High-selectivity Detection of 2,4,6-Trinitrophenol Based on Fluorescent Mg-MOF-74 in Ethanol Solution. Chemical Research in Chinese Universities, 2018, 34, 175-179.	1.3	6
103	Wavelength Scaling of Terahertz Wave Absorption via Preformed Air Plasma. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 846-850.	2.0	5
104	Halogen Bonding in the Assembly of a 1D Cadmium(II) Polymer Based on Chlorendic Acid (HET). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1269-1273.	0.6	4
105	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 16835-16843.	1.6	4
106	Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie, 2021, 133, 20328-20334.	1.6	4
107	Synthesis, Structures, and Fluorescent Properties of Three Cobalt-Based Coordination Polymers with a Rigid Tripodal Carboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 31-35.	0.6	3
108	A one-dimensional coordination polymer based on a di-Schiff base supported trinuclear Cu ^{II} subunit. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, m97-m99.	0.4	2

#	Article	IF	CITATIONS
109	Synthesis, Structure, and Luminescent Properties of Three Coordination Compounds Based on <i>in situ</i> Generated Tetrazolate and Carboxylate Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1408-1412.	0.6	1
110	Enhanced THz-to-IR emission from gas-surrounded metallic nanostructures by femtosecond laser irradiation. Optics Communications, 2016, 381, 414-417.	1.0	1
111	Terahertz Wave Modulation by Pre-plasma Using Different Laser Wavelength. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 962-970.	1.2	1
112	Intense and ultra-broadband Terahertz generation from metal foil., 2013,,.		0
113	Terahertz wave absorption via femtosecond laser-filament concatenation. Optical Engineering, 2015, 54, 046104.	0.5	0
114	Modulation of terahertz wave based on a preionized plasma. , 2019, , .		0
115	Metal–Organic Frameworks: Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization (Adv. Sci. 23/2019). Advanced Science, 2019, 6, 1970141.	5.6	0
116	Frontispiz: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie, 2021, 133, .	1.6	0
117	Frontispiece: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
118	Ferrocene Induced Perpetual Recovery on All Elemental Defects in Perovskite Solar Cells. Angewandte Chemie, 0, , .	1.6	0