

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4832917/publications.pdf Version: 2024-02-01

Keluu

#	Article	IF	CITATIONS
1	Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO ₂ Nanocomposites for Lithium Ion Battery. Nano Letters, 2013, 13, 1711-1716.	9.1	278
2	Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Applied Materials & Interfaces, 2014, 6, 1313-1319.	8.0	223
3	Transparent, Mechanically Strong, Extremely Tough, Selfâ€Recoverable, Healable Supramolecular Elastomers Facilely Fabricated via Dynamic Hard Domains Design for Multifunctional Applications. Advanced Functional Materials, 2020, 30, 1907109.	14.9	208
4	A High-Throughput, Controllable, and Environmentally Benign Fabrication Process of Thermoplastic Nanofibers. Macromolecular Materials and Engineering, 2007, 292, 407-414.	3.6	141
5	A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8, 12105-12112.	5.6	141
6	Large-Area, Wearable, Self-Powered Pressure–Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sensors, 2020, 5, 2545-2554.	7.8	106
7	Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 13105-13113.	8.0	102
8	Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-Dimensional Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn. ACS Applied Materials & Interfaces, 2017, 9, 42058-42066.	8.0	91
9	Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1234-1241.	7.6	82
10	The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosensors and Bioelectronics, 2017, 95, 138-145.	10.1	81
11	Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Composites Science and Technology, 2012, 72, 633-639.	7.8	76
12	A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. Journal of Materials Chemistry A, 2018, 6, 3692-3704.	10.3	73
13	Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Environmental Science & Technology, 2016, 50, 7889-7895.	10.0	64
14	Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends. European Polymer Journal, 2007, 43, 3587-3596.	5.4	60
15	Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 2020, 182, 107614.	12.0	60
16	Radical Graft Polymerization of an Allyl Monomer onto Hydrophilic Polymers and Their Antibacterial Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2011, 3, 2838-2844.	8.0	52
17	Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2014, 66, 227-236.	7.6	51
18	Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Composites Science and Technology, 2021, 215, 109023.	7.8	50

#	Article	IF	CITATIONS
19	Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Composites Part B: Engineering, 2021, 215, 108752.	12.0	49
20	Noncrystalline nickel phosphide decorated poly(vinyl alcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. Applied Catalysis B: Environmental, 2016, 196, 223-231.	20.2	48
21	Ultrasensitive Wearable Pressure Sensors Assembled by Surface-Patterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 42706-42714.	8.0	47
22	Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers, 2019, 11, 1289.	4.5	44
23	Amine-functionalized PVA- co -PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin. Colloids and Surfaces B: Biointerfaces, 2017, 150, 271-278.	5.0	42
24	Hydrophilic PVA-co-PE nanofiber membrane functionalized with iminodiacetic acid by solid-phase synthesis for heavy metal ions removal. Reactive and Functional Polymers, 2014, 82, 98-102.	4.1	41
25	The poly(vinyl alcohol-co-ethylene) nanofiber/silica coated composite membranes for oil/water and oil-in-water emulsion separation. Composites Communications, 2018, 7, 69-73.	6.3	41
26	Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 19350-19362.	8.0	41
27	Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward Self-Antiviral Personal Protective Equipment. ACS Nano, 2021, 15, 13857-13870.	14.6	38
28	Highly Accurate Wearable Piezoresistive Sensors without Tension Disturbance Based on Weaved Conductive Yarn. ACS Applied Materials & Interfaces, 2020, 12, 35638-35646.	8.0	33
29	High performance filtration nanofibrous membranes based on hydrophilic poly(vinyl) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10 ₃₂ 50 342
30	Flexible nanofibers-reinforced silk fibroin films plasticized by glycerol. Composites Part B: Engineering, 2018, 152, 305-310.	12.0	32
31	Ag nanoparticles decorated PVA-co-PE nanofiber-based membrane with antifouling surface for highly efficient inactivation and interception of bacteria. Applied Surface Science, 2020, 506, 144664.	6.1	32
32	Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Composite Structures, 2014, 108, 987-991.	5.8	30
33	Nanofibrous Aerogels with Vertically Aligned Microchannels for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 42686-42695.	8.0	30
34	High performance HKUST-1@PVA-co-PE/PVA hybrid hydrogel with enhanced selective adsorption. Composites Communications, 2018, 10, 36-40.	6.3	29
35	Immobilization of Firefly Luciferase on PVA- <i>co</i> -PE Nanofibers Membrane as Biosensor for Bioluminescent Detection of ATP. ACS Applied Materials & Interfaces, 2015, 7, 20046-20052.	8.0	27
36	Chemiluminescence biosensor for hydrogen peroxide determination by immobilizing horseradish peroxidase onto PVA- co -PF nanofiber membrane. European Polymer Journal, 2017, 91, 307-314.	5.4	26

#	Article	IF	CITATIONS
37	Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation. Aggregate, 2021, 2, e30.	9.9	26
38	A simple colorimetric method for viable bacteria detection based on cell counting Kit-8. Analytical Methods, 2021, 13, 5211-5215.	2.7	26
39	Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics. Journal of Materials Science, 2018, 53, 8409-8419.	3.7	25
40	In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol. Composites Communications, 2018, 9, 11-16.	6.3	25
41	Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 37764-37773.	8.0	25
42	Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Analytical and Bioanalytical Chemistry, 2020, 412, 7515-7524.	3.7	25
43	Handedness Inversion of Chiral 3â€Aminophenol Formaldehyde Resin Nanotubes Mediated by Metal Coordination. Angewandte Chemie - International Edition, 2021, 60, 7759-7769.	13.8	25
44	Large scale poly(vinyl alcohol-co-ethylene)/TiO ₂ hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance. RSC Advances, 2015, 5, 87924-87931.	3.6	24
45	Concurrent filtration and inactivation of bacteria using poly(vinyl alcohol-co-ethylene) nanofibrous membrane facilely modified using chitosan and graphene oxide. Environmental Science: Nano, 2017, 4, 385-395.	4.3	21
46	Highly transparent and rollable PVA- <i>co</i> -PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices. Nanoscale, 2017, 9, 19216-19226.	5.6	21
47	Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH Nanofibrous Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 23142-23152.	8.0	19
48	Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta, 2022, 238, 123055.	5.5	17
49	PVA- <i>co</i> -PE Nanofibrous Filter Media with Tailored Three-Dimensional Structure for High Performance and Safe Aerosol Filtration via Suspension-Drying Procedure. Industrial & Engineering Chemistry Research, 2018, 57, 9269-9280.	3.7	16
50	A Readily Accessible Functional Nanofibrous Membrane for High apacity Immobilization of Ag Nanoparticles and Ultrafast Catalysis Application. Advanced Materials Interfaces, 2019, 6, 1801617.	3.7	15
51	The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. Journal of Power Sources, 2019, 412, 514-519.	7.8	15
52	Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115657.	3.5	15
53	Highly efficient nanofibrous sterile membrane with anti-BSA/RNA-fouling surface via plasma-assisted carboxylation process. Journal of Membrane Science, 2020, 601, 117935.	8.2	14
54	Wide-range sensitive all-textile piezoresistive sensors assembled with biomimetic core-shell yarn via facile embroidery integration. Chemical Engineering Journal, 2022, 435, 135003.	12.7	14

#	Article	IF	CITATIONS
55	Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite. Composites Communications, 2017, 6, 52-58.	6.3	12
56	Fabrication of ZrC/PVA-co-PE NF composite membranes with photo-thermal conversion for solar desalination. Composites Communications, 2019, 13, 151-155.	6.3	12
57	Ag nanoparticles decorated PVA-co-PE nanofibrous microfiltration membrane with antifouling surface for efficient sterilization. Composites Communications, 2020, 21, 100379.	6.3	11
58	Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosensors and Bioelectronics, 2022, 202, 114013.	10.1	10
59	A Hierarchical Structure of Flower-Like Zinc Oxide and Poly(Vinyl Alcohol- <i>co</i> -Ethylene) Nanofiber Hybrid Membranes for High-Performance Air Filters. ACS Omega, 2022, 7, 3030-3036.	3.5	9
60	Layer-by-layer assembly of composite conductive fiber-based organic electrochemical transistor for highly sensitive detection of sialic acid. Electrochimica Acta, 2022, 425, 140716.	5.2	9
61	Affinity functionalization of PVA-co-PE nanofibrous membrane with Ni(ii)-chelated ligand for bovine hemoglobin adsorption. New Journal of Chemistry, 2018, 42, 3990-3994.	2.8	8
62	Electrochemical synthesis for α-arylation of ketones using enol acetates and aryl diazonium salts. Organic Chemistry Frontiers, 2022, 9, 2215-2219.	4.5	7
63	Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Materials Today Communications, 2022, 31, 103663.	1.9	7
64	Dynamic layer-by-layer films on nanofiber membrane: a platform for ultra-sensitive bacterial concentration detection. Chemical Communications, 2018, 54, 7920-7923.	4.1	6
65	Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels. Polymers, 2019, 11, 1883.	4.5	6
66	Fabrication of silica/PVA-co-PE nanofiber membrane for oil/water separation. Fashion and Textiles, 2021, 8, .	2.4	6
67	Electrodeposition of poly (vinyl alcohol-co-ethylene) nanofiber reinforced chitosan nanocomposite film for electrochemically programmed release of protein. Polymer, 2020, 193, 122338.	3.8	5
68	Design and synthesis of mechanochromic poly(ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polymer Chemistry, 2022, 13, 2155-2164.	3.9	5
69	Surface Functional Nanofiber Membrane for Ultrasensitive and Naked-Eye Visualization of Bacterial Concentration. ACS Applied Bio Materials, 2020, 3, 6466-6477.	4.6	3
70	Selfâ€Reinforced Polymer Nanofiber Aerogels for Multifunctional Applications. Macromolecular Materials and Engineering, 0, , 2100971.	3.6	3
71	Polyamide thin film nanocomposite membrane with internal void structure mediated by silica and SDS for highly permeable reverse-osmosis application. Composites Communications, 2022, , 101092.	6.3	3
72	Caterpillar-like Ag–ZnO–C hollow nanocomposites for efficient solar photocatalytic degradation and disinfection. Environmental Science: Nano, 2022, 9, 975-987.	4.3	2

#	Article	IF	CITATIONS
73	Highâ€Performance PA Nanofiltration Membrane with Coralâ€Reefâ€Like Morphology atop Polydopamine Decorated EVOH Nanofiber Scaffold. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
74	Facile fabrication of poly(glycidyl methacrylate)-b-polystyrene functional fibers under a shear field and immobilization of hemoglobin. New Journal of Chemistry, 2018, 42, 8537-8543.	2.8	1
75	An EVOH nanofibrous sterile membrane with a robust and antifouling surface for high-performance sterile filtration <i>via</i> glutaraldehyde crosslinking and a plasma-assisted process. Soft Matter, 2022, 18, 4991-5000.	2.7	1
76	In-situ preparation of MOFs/SiC/PVA-Co-PE nanofiber membranes for efficient photocatalytic reduction of CO2. E3S Web of Conferences, 2021, 252, 02056.	0.5	0
77	In-situ preparation of MIL-88A(Fe)/MIL-100(Fe)/PVA-Co-PE nanofiber membranes for efficient photocatalytic reduction of CO2. IOP Conference Series: Earth and Environmental Science, 2021, 760, 012017.	0.3	0