Francesco Vinale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4832914/publications.pdf

Version: 2024-02-01

99 papers

5,705 citations

34 h-index 79698 73 g-index

100 all docs

100 docs citations

100 times ranked

4609 citing authors

#	Article	IF	CITATIONS
1	Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 2008, 40, 1-10.	8.8	932
2	Trichoderma-based Products and their Widespread Use in Agriculture. The Open Mycology Journal, 2014, 8, 71-126.	0.8	451
3	A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 2008, 72, 80-86.	2.5	441
4	Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 2006, 50, 307-321.	1.7	247
5	Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 2006, 43, 143-148.	2.2	241
6	Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression. Annual Review of Phytopathology, 2018, 56, 1-20.	7.8	215
7	Harzianic Acid, an Antifungal and Plant Growth Promoting Metabolite from <i>Trichoderma harzianum</i> . Journal of Natural Products, 2009, 72, 2032-2035.	3.0	194
8	Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal, 2014, 8, 127-139.	0.8	188
9	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	2.6	147
10	Identification of a New Biocontrol Gene in <i>Trichoderma atroviride</i> : The Role of an ABC Transporter Membrane Pump in the Interaction with Different Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2009, 22, 291-301.	2.6	139
11	Harzianic acid: a novel siderophore from <i>Trichoderma harzianum</i> . FEMS Microbiology Letters, 2013, 347, n/a-n/a.	1.8	139
12	Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Frontiers in Microbiology, 2018, 9, 1966.	3.5	126
13	Factors affecting the production of <i>Trichoderma harzianum </i> secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology, 2009, 48, 705-11.	2.2	114
14	Multiple Roles and Effects of a Novel <i>Trichoderma</i> Hydrophobin. Molecular Plant-Microbe Interactions, 2015, 28, 167-179.	2.6	100
15	Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biology and Biochemistry, 2009, 41, 2406-2413.	8.8	95
16	A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications. Molecules, 2014, 19, 9760-9772.	3.8	89
17	Secondary metabolites from the endophytic fungus <i>Talaromyces pinophilus</i> . Natural Product Research, 2017, 31, 1778-1785.	1.8	85
18	Beneficial effects of <i>Trichoderma</i> secondary metabolites on crops. Phytotherapy Research, 2020, 34, 2835-2842.	5.8	79

#	Article	IF	Citations
19	Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology, 2019, 103, 9287-9303.	3.6	68
20	<i>Trichoderma</i> Secondary Metabolites that Affect Plant Metabolism. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	67
21	Application of <i>Trichoderma</i> Strains and Metabolites Enhances Soybean Productivity and Nutrient Content. Journal of Agricultural and Food Chemistry, 2019, 67, 1814-1822.	5.2	67
22	Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats. Journal of Fungi (Basel, Switzerland), 2017, 3, 34.	3.5	61
23	Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications, 2012, 7, 1545-50.	0.5	61
24	Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from <i>Trichoderma</i> Agricultural and Food Chemistry, 2016, 64, 3538-3545.	5.2	56
25	Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. Scientific Reports, 2017, 7, 14330.	3.3	55
26	The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. Environmental Pollution, 2020, 261, 114108.	7.5	55
27	Cremenolide, a new antifungal, 10-member lactone from <i>Trichoderma cremeum</i> with plant growth promotion activity. Natural Product Research, 2016, 30, 2575-2581.	1.8	51
28	Cerinolactone, a Hydroxy-Lactone Derivative from <i>Trichoderma cerinum</i> . Journal of Natural Products, 2012, 75, 103-106.	3.0	49
29	Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Frontiers in Microbiology, 2020, 11, 1364.	3.5	49
30	Isolation, production and <i>inÂvitro</i> effects of the major secondary metabolite produced by <i>Trichoderma</i> species used for the control of grapevine trunk diseases. Plant Pathology, 2016, 65, 104-113.	2.4	48
31	Application of Trichoderma harzianum, 6-Pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. Plants, 2020, 9, 771.	3.5	46
32	Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE, 2018, 13, e0198728.	2.5	40
33	A new fungal growth inhibitor from Trichoderma viride. Tetrahedron, 1997, 53, 3135-3144.	1.9	37
34	Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology in Stallions. Molecules, 2019, 24, 1981.	3.8	37
35	Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 2019, 20, 549.	4.1	36
36	Effects of Trichoderma Biostimulation on the Phenolic Profile of Extra-Virgin Olive Oil and Olive Oil By-Products. Antioxidants, 2020, 9, 284.	5.1	36

#	Article	IF	Citations
37	Bioactive Compounds from Marine-Derived Aspergillus, Penicillium, Talaromyces and Trichoderma Species. Marine Drugs, 2018, 16, 408.	4.6	31
38	Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Talaromyces albobiverticillius 30548. Microorganisms, 2019, 7, 10.	3.6	29
39	Organic Amendments Modulate Soil Microbiota and Reduce Virus Disease Incidence in the TSWV-Tomato Pathosystem. Pathogens, 2020, 9, 379.	2.8	27
40	An Innovative Olive Pâté with Nutraceutical Properties. Antioxidants, 2020, 9, 581.	5.1	26
41	Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 2008, 112, 737-746.	2.5	25
42	New Strategies in the Cultivation of Olive Trees and Repercussions on the Nutritional Value of the Extra Virgin Olive Oil. Molecules, 2020, 25, 2345.	3.8	25
43	Inhibitory effect of trichodermanone C, a sorbicillinoid produced by <i>Trichoderma citrinoviride</i> associated to the green alga <i>Cladophora</i> sp., on nitrite production in LPS-stimulated macrophages. Natural Product Research, 2019, 33, 3389-3397.	1.8	24
44	Effect of <i>Trichoderma</i> Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits. Journal of Agricultural and Food Chemistry, 2020, 68, 7246-7258.	5.2	24
45	Total Synthesis and Biological Evaluation of the Tetramic Acid Based Natural Product Harzianic Acid and Its Stereoisomers. Organic Letters, 2015, 17, 692-695.	4.6	23
46	Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Applied Soil Ecology, 2018, 124, 351-361.	4.3	22
47	Metabolites of a <i>Drechslera</i> sp. endophyte with potential as biocontrol and bioremediation agent. Natural Product Research, 2021, 35, 4508-4516.	1.8	22
48	A Preliminary Study on Metabolome Profiles of Buffalo Milk and Corresponding Mozzarella Cheese: Safeguarding the Authenticity and Traceability of Protected Status Buffalo Dairy Products. Molecules, 2020, 25, 304.	3.8	22
49	Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens, 2021, 10, 870.	2.8	22
50	An antifungal and plant growth promoting metabolite from a sterile dark ectotrophic fungus. Phytochemistry, 2006, 67, 2277-2280.	2.9	20
51	Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites, 2021, 11, 213.	2.9	20
52	Symbiosis disruption in the olive fruit fly, <scp><i>Bactrocera oleae</i></scp> (Rossi), as a potential tool for sustainable control. Pest Management Science, 2020, 76, 3199-3207.	3.4	19
53	An Environmentally Friendly Practice Used in Olive Cultivation Capable of Increasing Commercial Interest in Waste Products from Oil Processing. Antioxidants, 2020, 9, 466.	5.1	19
54	Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta). Marine Drugs, 2020, 18, 169.	4.6	18

#	Article	IF	CITATIONS
55	Secondary metabolites produced by a root-inhabiting sterile fungus antagonistic towards pathogenic fungi. Letters in Applied Microbiology, 2010, 50, 380-385.	2.2	17
56	Talarodiolide, a New 12-Membered Macrodiolide, and GC/MS Investigation of Culture Filtrate and Mycelial Extracts of Talaromyces pinophilus. Molecules, 2018, 23, 950.	3.8	17
57	Detoxification of olive mill wastewaters by zinc–aluminium layered double hydroxides. Applied Clay Science, 2011, 53, 737-744.	5.2	16
58	Changes in Bull Semen Metabolome in Relation to Cryopreservation and Fertility. Animals, 2020, 10, 1065.	2.3	16
59	The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. Journal of Fungi (Basel, Switzerland), 2020, 6, 369.	3.5	15
60	Bivalent Metal-Chelating Properties of Harzianic Acid Produced by Trichoderma pleuroticola Associated to the Gastropod Melarhaphe neritoides. Molecules, 2020, 25, 2147.	3.8	15
61	Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. Molecules, 2022, 27, 3959.	3.8	14
62	Convenient Synthesis of Lactuloselysine and Its Use for LC-MS Analysis in Milk-like Model Systems§. Journal of Agricultural and Food Chemistry, 1999, 47, 4700-4706.	5.2	13
63	Antimicrobial activity of harzianic acid against <i>Staphylococcus pseudintermedius</i> Product Research, 2021, 35, 5440-5445.	1.8	13
64	Chlamyphilone, a Novel Pochonia chlamydosporia Metabolite with Insecticidal Activity. Molecules, 2019, 24, 750.	3.8	12
65	Identification of the Main Metabolites of a Marine-Derived Strain of Penicillium brevicompactum Using LC and GC MS Techniques. Metabolites, 2020, 10, 55.	2.9	12
66	Biochar-derived smoke-water exerts biological effects on nematodes, insects, and higher plants but not fungi. Science of the Total Environment, 2021, 750, 142307.	8.0	12
67	Coordination Properties of the Fungal Metabolite Harzianic Acid Toward Toxic Heavy Metals. Toxics, 2021, 9, 19.	3.7	12
68	Substrate Specificity of Amadoriase I from Aspergillus fumigatus. Annals of the New York Academy of Sciences, 2005, 1043, 837-844.	3.8	11
69	Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort European Food Research and Technology, 2013, 236, 1063-1071.	3.3	11
70	Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot. European Journal of Plant Pathology, 2014, 140, 385-397.	1.7	10
71	Antibiofilm Activity of a Trichoderma Metabolite against Xanthomonas campestris pv. campestris, Alone and in Association with a Phage. Microorganisms, 2020, 8, 620.	3.6	10
72	Increased water use efficiency in miR396-downregulated tomato plants. Plant Science, 2021, 303, 110729.	3.6	10

#	Article	IF	CITATIONS
73	Effect of Selected Trichoderma Strains and Metabolites on Olive Drupes. Applied Sciences (Switzerland), 2021, 11, 8710.	2.5	10
74	In Vitro Application of Exogenous Fibrolytic Enzymes from Trichoderma Spp. to Improve Feed Utilization by Ruminants. Agriculture (Switzerland), 2022, 12, 573.	3.1	10
75	The Shifting Mycotoxin Profiles of Endophytic Fusarium Strains: A Case Study. Agriculture (Switzerland), 2019, 9, 143.	3.1	9
76	Antibiotic Activity of a Paraphaeosphaeria sporulosa-Produced Diketopiperazine against Salmonella enterica. Journal of Fungi (Basel, Switzerland), 2020, 6, 83.	3.5	9
77	A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes. Agriculture (Switzerland), 2020, 10, 643.	3.1	8
78	Metabolites produced by Gnomoniopsis castanea associated with necrosis of chestnut galls. Chemical and Biological Technologies in Agriculture, 2014, 1, .	4.6	7
79	<i>Trichoderma</i> spp. and a carob (<i>Ceratonia siliqua</i>) galactomannan to control the root-knot nematode <i>Meloidogyne incognita</i> on tomato plants. Canadian Journal of Plant Pathology, 2021, 43, 267-274.	1.4	7
80	Improvement of Nutraceutical Value of Parsley Leaves (Petroselinum crispum) upon Field Applications of Beneficial Microorganisms. Horticulturae, 2021, 7, 281.	2.8	7
81	Combined Biostimulant Applications of Trichoderma spp. with Fatty Acid Mixtures Improve Biocontrol Activity, Horticultural Crop Yield and Nutritional Quality. Agronomy, 2022, 12, 275.	3.0	7
82	The Role of Natural Products in Plant-Microbe Interactions. , 2009, , 301-320.		6
83	Milk Metabolomics Reveals Potential Biomarkers for Early Prediction of Pregnancy in Buffaloes Having Undergone Artificial Insemination. Animals, 2020, 10, 758.	2.3	5
84	Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. PLoS ONE, 2020, 15, e0228936.	2.5	4
85	Metabolic Profile and Mycoherbicidal Activity of Three Alternaria alternata Isolates for the Control of Convolvulus arvensis, Sonchus oleraceus, and Xanthium strumarium. Pathogens, 2021, 10, 1448.	2.8	4
86	Biopesticides and Biofertilizers Based on Fungal Secondary Metabolites. Journal of Biofertilizers $\&$ Biopesticides, 2014, 05, .	0.8	3
87	Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959.	3.8	3
88	The need for a coordinated action to elucidate ecological occurrence and functions of endophytic fungal communities. Folia Horticulturae, 2021, 33, 1-7.	1.8	2
89	Editorial: Designing Bio-Formulations Based on Organic Amendments, Beneficial Microbes and Their Metabolites. Frontiers in Microbiology, 2021, 12, 832149.	3. 5	2
90	Editorial: The Plant Holobiont Volume II: Impacts of the Rhizosphere on Plant Health. Frontiers in Plant Science, 2021, 12, 809291.	3.6	2

#	Article	IF	CITATIONS
91	Editorial: Molecular Intricacies of Trichoderma-Plant-Pathogen Interactions. Frontiers in Fungal Biology, 2022, 3, .	2.0	2
92	A novel understanding of the three-way interaction between Trichoderma spp., the colonized plant and fungal pathogens. , 0 , , $291-309$.		1
93	Reinforced Olive PâtÃ \otimes as a Source of Antioxidants with Positive Effects on Young Smokers. Medicina (Lithuania), 2019, 55, 680.	2.0	1
94	A Novel Antagonistic Strain of <i>Sepedonium chrysospermum</i> . Journal of Nutritional Ecology and Food Research, 2013, 1, 233-239.	0.1	1
95	Fungal Secondary Metabolism. , 2021, , 54-63.		О
96	Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes., 2020, 15, e0228936.		0
97	Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. , 2020, 15, e0228936.		О
98	Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes., 2020, 15, e0228936.		0
99	Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. , 2020, 15, e0228936.		0