
Ashok K Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4832880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sirtuin1 contributes to the overexpression of Gi \hat{i} ± proteins and hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 2022, 40, 117-127.	0.5	4
2	Role of cyclic AMP response element binding protein (CREB) in angiotensin II-induced responses in vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2021, 99, 30-35.	1.4	2
3	Angiotensin II-induced histone deacetylase 5 phosphorylation, nuclear export, and Egr-1 expression are mediated by Akt pathway in A10 vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1554-H1565.	3.2	8
4	Involvement of the Akt-dependent CREB signaling pathway in hydrogen-peroxide-induced early growth response protein-1 expression in rat vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2019, 97, 885-892.	1.4	5
5	Protein kinase B/AKT mediates insulinâ€like growth factor 1â€induced phosphorylation and nuclear export of histone deacetylase 5 via NADPH oxidase 4 activation in vascular smooth muscle cells. Journal of Cellular Physiology, 2019, 234, 17337-17350.	4.1	17
6	STIMâ€1 and ORAIâ€1 channel mediate angiotensinâ€llâ€induced expression of Egrâ€1 in vascular smooth muscl cells. Journal of Cellular Physiology, 2017, 232, 3496-3509.	e 4.1	36
7	cAMP attenuates angiotensin-II-induced Egr-1 expression via PKA-dependent signaling pathway in vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2017, 95, 928-937.	1.4	7
8	Src tyrosine kinase mediates endothelin-1-induced early growth response protein-1 expression via MAP kinase-dependent pathways in vascular smooth muscle cells. International Journal of Molecular Medicine, 2016, 38, 1879-1886.	4.0	15
9	Early Growth Response Proteinâ€1 Expression by Insulinâ€Like Growth Factorâ€1 Requires ROSâ€Dependent Activation of ERK1/2 and PKB Pathways in Vascular Smooth Muscle Cells. Journal of Cellular Biochemistry, 2016, 117, 152-162.	2.6	14
10	Ca ²⁺ /Calmodulin-Dependent Protein Kinase- II in Vasoactive Peptide- Induced Responses and Vascular Biology. Current Vascular Pharmacology, 2014, 12, 249-257.	1.7	7
11	Angiotensinâ€llâ€induced expression of the early growth response protein 1 is mediated by CaMKIIâ€dependent pathway in vascular smooth muscle cells (1011.7). FASEB Journal, 2014, 28, 1011.7.	0.5	0
12	Involvement of the early growth response protein 1 in vascular pathophysiology: an overview. Indian Journal of Biochemistry and Biophysics, 2014, 51, 457-66.	0.0	4
13	Insulino-mimetic and anti-diabetic effects of zinc. Journal of Inorganic Biochemistry, 2013, 120, 8-17.	3.5	87
14	ET-1-induced growth promoting responses involving ERK1/2 and PKB signaling and Egr-1 expression are mediated by Ca2+/CaM-dependent protein kinase-II in vascular smooth muscle cells. Cell Calcium, 2013, 54, 428-435.	2.4	16
15	Insulin-like growth-factor-1-induced PKB signaling and Egr-1 expression is inhibited by curcumin in A-10 vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2013, 91, 241-247.	1.4	21
16	Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1277-1285.	1.4	17
17	Endothelinâ€1 (ETâ€1)â€induced Early Growth Response Factorâ€1 Expression in Vascular Smooth Muscle Cells (VSMC) requires câ€6RC and ERK1/2 activation. FASEB Journal, 2012, 26, 761.20.	0.5	0
18	Endothelinâ€1 (ETâ€1) induces Ca2+â€Calmodulinâ€dependent Protein Kinase II α (CaMKIIâ€Î±) expression in an ERK1/2â€dependent pathway in vascular smooth muscle cells (VSMC). FASEB Journal, 2012, 26, 761.22.	0.5	0

#	Article	IF	CITATIONS
19	Involvement of Growth Factor Receptor and Nonreceptor Protein Tyrosine Kinases in Endothelin-1 and Angiotensin II-Induced Signaling Pathways in the Cardiovascular System. , 2011, , 315-333.		1
20	Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+-induced ERK1/2 and PKB phosphorylation. Journal of Biological Inorganic Chemistry, 2010, 15, 399-407.	2.6	19
21	Involvement of insulin-like growth factor 1 receptor transactivation in endothelin-1-induced signaling in vascular smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2010, 88, 501-509.	1.4	10
22	Requirement of c‣rc in Angiotensin II and Endothelin 1â€induced Activation of MAPKinases in Vascular Smooth Muscle Cells (VSMC). FASEB Journal, 2010, 24, 868.1.	0.5	0
23	Bis(maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, CSK-3 and FOXO1 contributes toits glucoregulatory responses (Review). International Journal of Molecular Medicine, 2009, 24, 303-9.	4.0	30
24	CaMKII knockdown attenuates H2O2-induced phosphorylation of ERK1/2, PKB/Akt, and IGF-1R in vascular smooth muscle cells. Free Radical Biology and Medicine, 2009, 47, 858-866.	2.9	40
25	The Insulin-Like Growth Factor Family: Molecular Mechanisms, Redox Regulation, and Clinical Implications. Antioxidants and Redox Signaling, 2009, 11, 1165-1190.	5.4	58
26	Role of insulin-like growth factorÂ1 receptor and c-Src in endothelin-1- and angiotensinÂll-induced PKB phosphorylation, and hypertrophic and proliferative responses in vascular smooth muscle cellsThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research Canadian Journal of Physiology and Pharmacology, 2009, 87, 1009-1018.	1.4	25
27	Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2072-H2079.	3.2	52
28	Insulin-like growth factor type-1 receptor transactivation in vasoactive peptide and oxidant-induced signaling pathways in vascular smooth muscle cellsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum Canadian Journal of Physiology and Pharmacology, 2007, 85, 105-111.	1.4	24
29	Endothelin-1-Induced Signaling Pathways in Vascular Smooth Muscle Cells. Current Vascular Pharmacology, 2007, 5, 45-52.	1.7	129
30	Role of receptor and nonreceptor protein tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling. Cell Biochemistry and Biophysics, 2007, 47, 1-10.	1.8	69
31	Activation of insulin-like growth factor type-1 receptor is required for H2O2-induced PKB phosphorylation in vascular smooth muscle cellsThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference Canadian Journal of Physiology and Pharmacology, 2006, 84, 777-786.	1.4	35
32	Involvement of Insulin-like Growth Factor Type 1 Receptor and Protein Kinase Cl̂´in Bis(maltolato)oxovanadium(IV)-Induced Phosphorylation of Protein Kinase B in HepG2 Cellsâ€. Biochemistry, 2006, 45, 11605-11615.	2.5	20
33	Insulin Signal Mimicry as a Mechanism for the Insulin-Like Effects of Vanadium. Cell Biochemistry and Biophysics, 2006, 44, 073-082.	1.8	58
34	Redox Regulation of Insulin Action and Signaling. Antioxidants and Redox Signaling, 2005, 7, 1011-1013.	5.4	7
35	H2O2-Induced Phosphorylation of ERK1/2 and PKB Requires Tyrosine Kinase Activity of Insulin Receptor and c-Src. Antioxidants and Redox Signaling, 2005, 7, 1014-1020.	5.4	67
36	Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis. Archives of Biochemistry and Biophysics, 2005, 440, 158-164.	3.0	42

#	Article	IF	CITATIONS
37	Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radical Biology and Medicine, 2004, 37, 208-215.	2.9	78
38	Distinct Roles of Ca ²⁺ , Calmodulin, and Protein Kinase C in H ₂ O ₂ -Induced Activation of ERK1/2, p38 MAPK, and Protein Kinase B Signaling in Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2004, 6, 353-366.	5.4	53
39	Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Archives of Biochemistry and Biophysics, 2003, 420, 9-17.	3.0	17
40	Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2O2 in vascular smooth muscle cells: potential involvement in vascular disease (review). International Journal of Molecular Medicine, 2003, 11, 229-34.	4.0	89
41	Anti-diabetic and toxic effects of vanadium compounds. Molecular and Cellular Biochemistry, 2000, 206, 177-182.	3.1	122
42	Stimulation of Mitogen-Activated Protein Kinases ERK-1 and ERK-2 by H2O2 in Vascular Smooth Muscle Cells. Progress in Experimental Cardiology, 2000, , 197-206.	0.0	3
43	Phosphatidylinositol 3-Kinase Requirement in Activation of the ras/C-raf-1/MEK/ERK and p70s6k Signaling Cascade by the Insulinomimetic Agent Vanadyl Sulfate. Biochemistry, 1999, 38, 14667-14675.	2.5	78
44	Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Molecular and Cellular Biochemistry, 1998, 182, 135-141.	3.1	133
45	Vanadyl Sulfate-Stimulated Glycogen Synthesis Is Associated with Activation of Phosphatidylinositol 3-Kinase and Is Independent of Insulin Receptor Tyrosine Phosphorylation. Biochemistry, 1998, 37, 7006-7014.	2.5	73
46	Smooth muscle contractility and protein tyrosine phosphorylation. , 1997, 176, 47-51.		24
47	Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Molecular and Cellular Biochemistry, 1995, 153, 69-78.	3.1	47
48	Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opinion on Investigational Drugs, 1995, 4, 525-536.	4.1	14
49	Activation of mitogen activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Letters, 1994, 340, 269-275.	2.8	68