
D James Donaldson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4832663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of NO(g) to painted surfaces and its reâ€emission with indoor illumination. Indoor Air, 2021, 31, 566-573.	2.0	7
2	Photochemical Aging of Levitated Aqueous Brown Carbon Droplets. ACS Earth and Space Chemistry, 2021, 5, 749-754.	1.2	13
3	Differences in Photosensitized Release of VOCs from Illuminated Seawater versus Freshwater Surfaces. ACS Earth and Space Chemistry, 2021, 5, 2233-2242.	1.2	9
4	Modeling the Removal of Water-Soluble Trace Gases from Indoor Air via Air Conditioner Condensate. Environmental Science & Technology, 2021, 55, 10987-10993.	4.6	8
5	Chemical Morphology Controls Reactivity of OH Radicals at the Air–Ice Interface. Journal of Physical Chemistry A, 2021, 125, 8925-8932.	1.1	2
6	Relating natural organic matter conformation, metal complexation, and photophysics. Canadian Journal of Chemistry, 2021, 99, 787-794.	0.6	2
7	lt's Different at the Top: Air–Ice Interface Chemistry in the Cryosphere. , 2021, , 259-290.		Ο
8	Real-Time Measurements of pH Changes in Single, Acoustically Levitated Droplets Due to Atmospheric Multiphase Chemistry. ACS Earth and Space Chemistry, 2020, 4, 854-861.	1.2	18
9	Fluorescence Quenching of Chlorophyll by Sea Water Components. ACS Earth and Space Chemistry, 2020, 4, 2378-2383.	1.2	1
10	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	5.8	70
11	Water uptake by indoor surface films. Scientific Reports, 2019, 9, 11089.	1.6	28
12	Differences in photochemistry between seawater and freshwater for two natural organic matter samples. Environmental Sciences: Processes and Impacts, 2019, 21, 28-39.	1.7	12
13	Seasonality of the Water-Soluble Inorganic Ion Composition and Water Uptake Behavior of Urban Grime. Environmental Science & Technology, 2019, 53, 5671-5677.	4.6	20
14	Indoor Lighting Releases Gas Phase Nitrogen Oxides from Indoor Painted Surfaces. Environmental Science and Technology Letters, 2019, 6, 92-97.	3.9	35
15	Tribute to Veronica Vaida. Journal of Physical Chemistry A, 2018, 122, 1157-1158.	1.1	0
16	Chemical Morphology and Reactivity at Environmental Interfaces. ACS Symposium Series, 2018, , 193-207.	0.5	2
17	Interfacial Photochemistry. , 2018, , 435-457.		9
18	Organic Composition, Chemistry, and Photochemistry of Urban Film in Leipzig, Germany. ACS Earth and Space Chemistry, 2018, 2, 935-945.	1.2	19

#	Article	IF	CITATIONS
19	Chemical Morphology of Frozen Mixed Nitrate–Salt Solutions. Journal of Physical Chemistry A, 2017, 121, 2166-2171.	1.1	16
20	Fatty Acid Surfactant Photochemistry Results in New Particle Formation. Scientific Reports, 2017, 7, 12693.	1.6	37
21	Water Evaporation from Acoustically Levitated Aqueous Solution Droplets. Journal of Physical Chemistry A, 2017, 121, 7197-7204.	1.1	23
22	Nitrate Photolysis in Salty Snow. Journal of Physical Chemistry A, 2016, 120, 7902-7908.	1.1	10
23	Atmospheric photochemistry at a fatty acid–coated air-water interface. Science, 2016, 353, 699-702.	6.0	133
24	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long hain Alkenes. Angewandte Chemie, 2016, 128, 10492-10495.	1.6	2
25	Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface. Environmental Science & Technology, 2016, 50, 11041-11048.	4.6	64
26	Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long hain Alkenes. Angewandte Chemie - International Edition, 2016, 55, 10336-10339.	7.2	63
27	Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation. Scientific Reports, 2016, 6, 30000.	1.6	21
28	Formation of reactive nitrogen oxides from urban grime photochemistry. Atmospheric Chemistry and Physics, 2016, 16, 6355-6363.	1.9	45
29	Heterogeneous Photochemistry in the Atmosphere. Chemical Reviews, 2015, 115, 4218-4258.	23.0	497
30	Photosensitized Production of Atmospherically Reactive Organic Compounds at the Air/Aqueous Interface. Journal of the American Chemical Society, 2015, 137, 8348-8351.	6.6	97
31	Reply to "Comment on †Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces' and on †Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces†Mâ€. Journal of Physical Chemistry A, 2015, 119, 10764-10765.	1.1	1
32	Chemistry of Urban Grime: Inorganic Ion Composition of Grime vs Particles in Leipzig, Germany. Environmental Science & Technology, 2015, 49, 12688-12696.	4.6	35
33	Red-light initiated atmospheric reactions of vibrationally excited molecules. Physical Chemistry Chemical Physics, 2014, 16, 827-836.	1.3	36
34	A Pinch of Salt Is All It Takes: Chemistry at the Frozen Water Surface. Accounts of Chemical Research, 2014, 47, 1587-1594.	7.6	38
35	Can We Model Snow Photochemistry? Problems with the Current Approaches. Journal of Physical Chemistry A, 2013, 117, 4733-4749.	1.1	68
36	Heterogeneous Photooxidation of Fluorotelomer Alcohols: A New Source of Aerosol-Phase Perfluorinated Carboxylic Acids. Environmental Science & Technology, 2013, 47, 6358-6367.	4.6	46

#	Article	IF	CITATIONS
37	Enhanced Surface Partitioning of Nitrate Anion in Aqueous Bromide Solutions. Journal of Physical Chemistry Letters, 2013, 4, 2994-2998.	2.1	18
38	Effect of Organic Coatings on Gas-Phase Nitrogen Dioxide Production from Aqueous Nitrate Photolysis. Journal of Physical Chemistry C, 2013, 117, 22260-22267.	1.5	15
39	Photochemical Renoxification of Nitric Acid on Real Urban Grime. Environmental Science & Technology, 2013, 47, 815-820.	4.6	109
40	Photochemical chlorine and bromine activation from artificial saline snow. Atmospheric Chemistry and Physics, 2013, 13, 9789-9800.	1.9	54
41	Emerging Areas in Atmospheric Photochemistry. Topics in Current Chemistry, 2012, 339, 1-53.	4.0	18
42	How does deposition of gas phase species affect pH at frozen salty interfaces?. Atmospheric Chemistry and Physics, 2012, 12, 10065-10073.	1.9	21
43	Organics in environmental ices: sources, chemistry, and impacts. Atmospheric Chemistry and Physics, 2012, 12, 9653-9678.	1.9	110
44	Heterogeneous Photochemistry of Oxalic Acid on Mauritanian Sand and Icelandic Volcanic Ash. Environmental Science & Technology, 2012, 46, 8756-8763.	4.6	30
45	Introduction to the Focus Issue on Marine Boundary Layer: Ocean Atmosphere Interactions Processes. Environmental Science & Technology, 2012, 46, 10383-10384.	4.6	2
46	Sea-Surface Chemistry and Its Impact on the Marine Boundary Layer. Environmental Science & Technology, 2012, 46, 10385-10389.	4.6	66
47	Standard States and Thermochemical Kinetics in Heterogeneous Atmospheric Chemistry. Journal of Physical Chemistry A, 2012, 116, 6312-6316.	1.1	18
48	Influence of Organic Coatings on Pyrene Ozonolysis at the Air–Aqueous Interface. Journal of Physical Chemistry A, 2012, 116, 423-429.	1.1	21
49	Laboratory Study of pH at the Air–Ice Interface. Journal of Physical Chemistry C, 2012, 116, 10171-10180.	1.5	26
50	Glancing-angle Raman study of nitrate and nitric acid at the air–aqueous interface. Chemical Physics Letters, 2012, 522, 1-10.	1.2	37
51	Exclusion of Nitrate to the Air–Ice Interface During Freezing. Journal of Physical Chemistry Letters, 2011, 2, 1967-1971.	2.1	33
52	Photooxidation of Atmospheric Alcohols on Laboratory Proxies for Mineral Dust. Environmental Science & Technology, 2011, 45, 10004-10012.	4.6	26
53	Substrate effects in the photoenhanced ozonation of pyrene. Atmospheric Chemistry and Physics, 2011, 11, 1243-1253.	1.9	19
54	Influence of water surface properties on the heterogeneous reaction between O3(g) and I(aq)â^'. Atmospheric Environment, 2011, 45, 6116-6120.	1.9	35

#	Article	IF	CITATIONS
55	Different photolysis kinetics at the surface of frozen freshwater vs. frozen salt solutions. Atmospheric Chemistry and Physics, 2010, 10, 10917-10922.	1.9	35
56	Hydroxyl radical reactivity at the air-ice interface. Atmospheric Chemistry and Physics, 2010, 10, 843-854.	1.9	45
57	Adsorption and Reaction of Trace Gas-Phase Organic Compounds on Atmospheric Water Film Surfaces: A Critical Review. Environmental Science & Technology, 2010, 44, 865-873.	4.6	150
58	Benzene Photolysis on Ice: Implications for the Fate of Organic Contaminants in the Winter. Environmental Science & Technology, 2010, 44, 3819-3824.	4.6	65
59	Anthracene Photolysis in Aqueous Solution and Ice: Photon Flux Dependence and Comparison of Kinetics in Bulk Ice and at the Airâ^'Ice Interface. Environmental Science & Technology, 2010, 44, 1302-1306.	4.6	52
60	Glancing-angle Raman spectroscopic probe for reaction kinetics at water surfaces. Physical Chemistry Chemical Physics, 2010, 12, 2648.	1.3	30
61	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	1.9	352
62	Spectroscopic studies of the heterogeneous reaction between O ₃ (g) and halides at the surface of frozen salt solutions. Journal of Geophysical Research, 2010, 115, .	3.3	29
63	Red sky at night: Long-wavelength photochemistry in the atmosphere. Environmental Science & Technology, 2010, 44, 5321-5326.	4.6	23
64	Mechanism of Aqueous-Phase Ozonation of S(IV). Journal of Physical Chemistry A, 2010, 114, 2164-2170.	1.1	6
65	Light changes the atmospheric reactivity of soot. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6605-6609.	3.3	252
66	Where does acid hydrolysis take place?. Physical Chemistry Chemical Physics, 2009, 11, 857-863.	1.3	35
67	Photoenhanced Reaction of Ozone with Chlorophyll at the Seawater Surface. Journal of Physical Chemistry C, 2009, 113, 2071-2077.	1.5	73
68	Self-Association of Naphthalene at the Airâ^'Ice Interface. Journal of Physical Chemistry A, 2009, 113, 7353-7359.	1.1	42
69	Photoenhanced ozone loss on solid pyrene films. Physical Chemistry Chemical Physics, 2009, 11, 7876.	1.3	35
70	Photooxidation of Halides by Chlorophyll at the Airâ^'Salt Water Interface. Journal of Physical Chemistry A, 2009, 113, 8591-8595.	1.1	54
71	On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Climatic Change, 2008, 90, 315-331.	1.7	17
72	Photoenhanced Uptake of NO ₂ by Pyrene Solid Films. Journal of Physical Chemistry A, 2008, 112, 9503-9508.	1.1	71

#	Article	IF	CITATIONS
73	Reactive Uptake of Ozone by Chlorophyll at Aqueous Surfaces. Environmental Science & Technology, 2008, 42, 1138-1143.	4.6	60
74	Heterogeneous ozonation kinetics of phenanthrene at the air–ice interface. Environmental Research Letters, 2008, 3, 045006.	2.2	36
75	Spectroscopic Probes of the Quasi-Liquid Layer on Ice. Journal of Physical Chemistry A, 2007, 111, 11006-11012.	1.1	101
76	Suppression of aqueous surface hydrolysis by monolayers of short chain organic amphiphiles. Physical Chemistry Chemical Physics, 2007, 9, 1362-9.	1.3	29
77	Role of the Aerosol Substrate in the Heterogeneous Ozonation Reactions of Surface-Bound PAHs. Journal of Physical Chemistry A, 2007, 111, 11050-11058.	1.1	138
78	Direct Experimental Evidence for a Heterogeneous Reaction of Ozone with Bromide at the Airâ^'Aqueous Interface. Journal of Physical Chemistry A, 2007, 111, 9809-9814.	1.1	80
79	Photochemical Loss of Nitric Acid on Organic Films:Â a Possible Recycling Mechanism for NOx. Environmental Science & Technology, 2007, 41, 3898-3903.	4.6	60
80	Overtone-Induced Degradation of Perfluorinated Alcohols in the Atmosphere. Journal of Physical Chemistry A, 2007, 111, 13466-13471.	1.1	29
81	Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces. Journal of Physical Chemistry A, 2007, 111, 1277-1285.	1.1	120
82	Assessing the importance of heterogeneous reactions of polycyclic aromatic hydrocarbons in the urban atmosphere using the Multimedia Urban Model. Atmospheric Environment, 2007, 41, 37-50.	1.9	56
83	The Influence of Organic Films at the Airâ^'Aqueous Boundary on Atmospheric Processes. Chemical Reviews, 2006, 106, 1445-1461.	23.0	320
84	Assessing the organic composition of urban surface films using nuclear magnetic resonance spectroscopy. Chemosphere, 2006, 63, 142-152.	4.2	65
85	Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films. Atmospheric Environment, 2006, 40, 3448-3459.	1.9	125
86	Uptake and reaction of atmospheric organic vapours on organic films. Faraday Discussions, 2005, 130, 227.	1.6	58
87	Overtone-Induced Decarboxylation:Â A Potential Sink for Atmospheric Diacids. Journal of Physical Chemistry A, 2005, 109, 597-602.	1.1	43
88	Prediction of Subcooled Vapor Pressures of Nonpolar Organic Compounds Using a One-Parameter QSPR. Journal of Chemical & Engineering Data, 2005, 50, 438-443.	1.0	14
89	Molecular polarizability as a single-parameter predictor of vapour pressures and octanol–air partitioning coefficients of non-polar compounds: a priori approach and results. Atmospheric Environment, 2004, 38, 213-225.	1.9	60
90	Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air–aqueous interface. Atmospheric Environment, 2004, 38, 6091-6103.	1.9	151

#	Article	IF	CITATIONS
91	Organic Aerosols and the Origin of Life: An Hypothesis. Origins of Life and Evolution of Biospheres, 2004, 34, 57-67.	0.8	69
92	Enhanced uptake of water by oxidatively processed oleic acid. Atmospheric Chemistry and Physics, 2004, 4, 2083-2089.	1.9	66
93	Photolysis of Sulfuric Acid Vapor by Visible Solar Radiation. Science, 2003, 299, 1566-1568.	6.0	155
94	Processing of unsaturated organic acid films and aerosols by ozone. Atmospheric Environment, 2003, 37, 2207-2219.	1.9	78
95	Uptake of water by organic films: the dependence on the film oxidation state. Atmospheric Environment, 2003, 37, 3529-3537.	1.9	48
96	Direct Observation of the Kinetics of an Atmospherically Important Reaction at the Airâ 'Aqueous Interface. Journal of Physical Chemistry A, 2003, 107, 11038-11042.	1.1	150
97	Atmospheric Photochemistry via Vibrational Overtone Absorption. Chemical Reviews, 2003, 103, 4717-4730.	23.0	97
98	Bimolecular reaction of molecular oxygen with overtone excited HOOH: Implications for recycling HO2 in the atmosphere. Physical Chemistry Chemical Physics, 2003, 5, 3183.	1.3	17
99	Enhanced Uptake of PAHs by Organic-Coated Aqueous Surfaces. Journal of Physical Chemistry A, 2003, 107, 2264-2269.	1.1	61
100	Ab Initio and Density Functional Study of Complexes between the Methylamines and Water. Journal of Physical Chemistry A, 2002, 106, 3185-3190.	1.1	36
101	Laser induced fluorescence of pyrene at an organic coated air–water interface. Physical Chemistry Chemical Physics, 2002, 4, 4186-4191.	1.3	43
102	Adsorption of Atmospheric Gases at the Airâ^'Water Interface. 4:Â The Influence of Salts. Journal of Physical Chemistry A, 2002, 106, 982-987.	1.1	43
103	The asymmetry of organic aerosol fission and prebiotic chemistry. Origins of Life and Evolution of Biospheres, 2002, 32, 237-245.	0.8	22
104	Activation barrier for multicomponent droplet formation on partially soluble nuclei. Journal of Geophysical Research, 2001, 106, 14447-14463.	3.3	10
105	OH production from the reaction of vibrationally excited H2in the mesosphere. Geophysical Research Letters, 2001, 28, 2157-2160.	1.5	23
106	Water complexes as catalysts in atmospheric reactions. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26, 473-478.	0.2	7
107	Spontaneous fission of atmospheric aerosol particles. Physical Chemistry Chemical Physics, 2001, 3, 5270-5273.	1.3	35
108	Ab initio investigation of water complexes of some atmospherically important acids: HONO, HNO3 and HO2NO2. Physical Chemistry Chemical Physics, 2001, 3, 1999-2006.	1.3	54

#	Article	IF	CITATIONS
109	Thermodynamics of heterogeneous multicomponent condensation on mixed nuclei. Journal of Chemical Physics, 2000, 113, 6822-6830.	1.2	15
110	Some speculations on the role of excited electronic states in nitrogen-oxygen atmospheric chemistry. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 183-188.	0.2	0
111	Enhancement of HOX at high solar zenith angles by overtone-induced dissociation of HNO3 and HNO4. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 223-227.	0.2	1
112	Adsorption of Atmospheric Gases at the Airâ^'Water Interface. 3:Â Methylamines. Journal of Physical Chemistry A, 2000, 104, 10789-10793.	1.1	40
113	Inelastic scattering of atoms and molecules from liquid crystal surfaces. Journal of Chemical Physics, 1999, 110, 8098-8103.	1.2	4
114	OH overtone spectra and intensities of pernitric acid. Chemical Physics Letters, 1999, 311, 131-138.	1.2	22
115	Adsorption of Atmospheric Gases at the Airâ `Water Interface. I. NH3. Journal of Physical Chemistry A, 1999, 103, 62-70.	1.1	140
116	Does molecular HNO3adsorb onto sulfuric acid droplet surfaces?. Geophysical Research Letters, 1999, 26, 3625-3628.	1.5	21
117	Twilight observations suggest unknown sources of HOx. Geophysical Research Letters, 1999, 26, 1373-1376.	1.5	85
118	Thermodynamics of heterogeneous binary condensation on insoluble nuclei. Journal of Geophysical Research, 1999, 104, 14283-14292.	3.3	18
119	Adsorption of Atmospheric Gases at the Airâ^'Water Interface. 2. C1â^'C4 Alcohols, Acids, and Acetone. Journal of Physical Chemistry A, 1999, 103, 871-876.	1.1	135
120	Absolute Intensities of Nitric Acid Overtones. Journal of Physical Chemistry A, 1998, 102, 5171-5174.	1.1	63
121	Ab Initio Study of SO2+ H2O. Journal of Physical Chemistry A, 1998, 102, 4638-4642.	1.1	68
122	Detailed Study of HOCl + HCl → Cl2+ H2O in Sulfuric Acid. Journal of Physical Chemistry A, 1997, 101, 4717-4725.	1.1	50
123	Atmospheric radical production by excitation of vibrational overtonesviaabsorption of visible light. Geophysical Research Letters, 1997, 24, 2651-2654.	1.5	94
124	Photodissociation of acrylonitrile at 193 nm: the CN-producing channel. Chemical Physics Letters, 1996, 249, 40-45.	1.2	13
125	Photophysics and photochemistry of I2 (D, D′) in rare gas clusters. Chemical Physics, 1996, 211, 377-386.	0.9	10
126	Surface-Mediated Disorder in Aligned Liquid Crystal Films Caused by Collisions with He. Physical Review Letters, 1996, 77, 310-313.	2.9	3

#	Article	IF	CITATIONS
127	Scattering of gases from aligned liquid crystals: Collisionâ€induced loss of order at the gas–liquid interface. Journal of Chemical Physics, 1996, 105, 9574-9579.	1.2	2
128	Dynamics of CO formation in the reaction O(3P)+C2H3. Chemical Physics, 1995, 193, 37-45.	0.9	30
129	Evidence for Adsorbed SO2 at the Aqueous-Air Interface. The Journal of Physical Chemistry, 1995, 99, 9313-9315.	2.9	83
130	Evidence for a Four-Center Mechanism in the Photoreaction of HI Clusters. The Journal of Physical Chemistry, 1995, 99, 6763-6766.	2.9	13
131	Photooxidation of CS2in the near-ultraviolet and its atmospheric implications. Geophysical Research Letters, 1995, 22, 2609-2612.	1.5	6
132	Two primary product channels in OClO photodissociation near 360 nm. Journal of Chemical Physics, 1994, 101, 9565-9572.	1.2	57
133	Laboratory simulation of polar stratospheric clouds. Geophysical Research Letters, 1994, 21, 373-376.	1.5	8
134	Photochemistry of alkyl halide dimers. Journal of Chemical Physics, 1993, 98, 4700-4706.	1.2	43
135	Modeâ€ s pecific chemical branching ratios in the photodissociation of OClO. Journal of Chemical Physics, 1993, 99, 3129-3132.	1.2	57
136	Laser-induced fluorescence study of iodine from methyl iodide photodissociation. The Journal of Physical Chemistry, 1992, 96, 19-21.	2.9	27
137	Clusterâ€induced photochemistry of CH3I at 248 nm. Journal of Chemical Physics, 1992, 97, 189-196.	1.2	36
138	Vibrational energy disposal in the CS(lΣ+) product of the two-photon, 308 nm photodissociation of CS2. Chemical Physics Letters, 1992, 198, 341-346.	1.2	10
139	Resonance-enhanced multiphoton ionization (REMPI) measurement of atomic chlorine(2P3/2 and 2P1/2) produced in the photolysis of chlorine dioxide (OCIO) from 355 to 370 nm. The Journal of Physical Chemistry, 1991, 95, 2113-2115.	2.9	56
140	Absorption spectroscopy of jet-cooled CS2: the linear excited state at 55741 to 60241 cmâ^'1. Chemical Physics Letters, 1991, 184, 152-158.	1.2	10
141	Product energy disposal in the nonadiabatic reaction S(1D)+CS2→S2 (X 3Σâ~'g)+CS (X 1Σ+). Journal of Chemical Physics, 1991, 95, 1738-1745.	f 1.2	19
142	Reply to comments on "Rydberg state dynamics of methyl iodide dimers and clusters revisited". The Journal of Physical Chemistry, 1990, 94, 7740-7741.	2.9	2
143	Two-photon photochemistry of carbon disulfide: formation of sulfur (S2)(v.ltoreq.2) and carbon monosulfide(v.ltoreq.10) at 308 nm. The Journal of Physical Chemistry, 1990, 94, 8918-8921.	2.9	19
144	A REMPI investigation of methyl iodide Rydberg state predissociation. Chemical Physics Letters, 1990, 173, 257-264.	1.2	12

#	Article	IF	CITATIONS
145	Spectroscopic and photochemical perturbations of weak interactions on electronic surfaces of methyl iodide. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2043.	1.7	13
146	One―and twoâ€photonâ€resonant multiphoton ionization spectra of CS2 from 45 500 to 48 100 cmâ Journal of Chemical Physics, 1989, 91, 7455-7460.	~`1. 1.2	21
147	A reinvestigation of the electronic spectra of ozone: condensed-phase effects. The Journal of Physical Chemistry, 1989, 93, 506-508.	2.9	58
148	Fourier transform UV/VIS emission spectroscopy of jet-cooled CN(B 2Σ+). Chemical Physics Letters, 1989, 157, 295-299.	1.2	12
149	Spectroscopic probe of intramolecular predissociation dynamics in clusters. The Journal of Physical Chemistry, 1989, 93, 513-520.	2.9	48
150	Ultraviolet absorption determination of intramolecular predissociation dynamics in methyl iodide dimers ((CH3I)2 and (CD3I)2). The Journal of Physical Chemistry, 1988, 92, 1204-1208.	2.9	37
151	Surface crossings and predissociation dynamics of methyl iodide Rydberg states. Journal of Chemical Physics, 1988, 88, 7410-7417.	1.2	29
152	Cluster-induced potential shifts as a probe for dissociation dynamics in the (n0-3s) Rydberg state of acetone. The Journal of Physical Chemistry, 1988, 92, 2766-2769.	2.9	45
153	The (n0-3s) Rydberg state of acetone: absorption spectroscopy of jet-cooled acetone and acetone-d6. The Journal of Physical Chemistry, 1988, 92, 2762-2766.	2.9	54
154	Spectroscopy of the (no-3s) Rydberg state of isolated and clustered acetaldehyde. The Journal of Physical Chemistry, 1988, 92, 5514-5517.	2.9	18
155	Laser photolysis, infrared fluorescence determination of methyl(.nu.3) vibrational deactivation by helium, argon, nitrogen, carbon monoxide, sulfur hexafluoride, and acetone. The Journal of Physical Chemistry, 1987, 91, 3128-3131.	2.9	25
156	Ultraviolet absorption spectroscopy of dissociating molecules: Effects of cluster formation on the photodissociation of CH3I. Journal of Chemical Physics, 1987, 87, 2522-2530.	1.2	84
157	Hydrogen bonded complexes and the HF vibrational energy distributions from the reaction of F atoms with NH2 and NH3. Chemical Physics, 1987, 114, 321-329.	0.9	15
158	Primary energy distribution in the products of the reaction F + HBr .fwdarw. HF(v') + Br. The Journal of Physical Chemistry, 1986, 90, 3110-3116.	2.9	17
159	Time-resolved FTIR photofragment emission spectroscopy: HCl vibrational distributions from the 193 nm photolysis of chloroethylenes. Chemical Physics Letters, 1986, 132, 240-246.	1.2	63
160	Absolute rate coefficients for methyl radical reactions by laser photolysis/time-resolved infrared chemiluminescence: methyl-d3 + HX .fwdarw. methane-d3 + X (X = Br, I). The Journal of Physical Chemistry, 1986, 90, 936-941.	2.9	15
161	Photofragmentation dynamics of acetone of 193 nm: State distributions of the CH3and CO fragments by time―and wavelengthâ€resolved infrared emission. Journal of Chemical Physics, 1986, 85, 817-824.	1.2	66
162	Potential energy and vibrational levels for local modes in water and acetylene. Chemical Physics, 1985, 94, 15-23.	0.9	19

#	Article	IF	CITATIONS
163	A twoâ€laser pulseâ€andâ€probe study of Tâ€R, V energy transfer collisions of H+NO at 0.95 and 2.2 eV. Journal of Chemical Physics, 1985, 83, 660-667.	1.2	46
164	Energy distributions in the HF and CO products of the reaction of F atoms with HCO. Journal of Chemical Physics, 1985, 82, 1873-1882.	1.2	42
165	Energy partitioning in atom–radical reactions: The reaction of F atoms with NH2. Journal of Chemical Physics, 1985, 82, 4524-4536.	1.2	29
166	Singlet–triplet surface crossings and lowâ€ŧemperature rate enhancement for O(3P)+H2→OH+H. Journal of Chemical Physics, 1984, 80, 221-231.	1.2	9
167	Vibrational energy partitioning in the reaction of F atoms with NH3 and ND3. Chemical Physics, 1984, 85, 47-62.	0.9	17
168	MRD l potential surfaces using balanced basis sets. II. O+H2 and F+H2. Journal of Chemical Physics, 1984, 81, 397-406.	1.2	23
169	Vibrational excitation of OH(X2Î) produced in the reaction of O(1D) with H2. Chemical Physics Letters, 1983, 95, 183-188.	1.2	82
170	Energy partitioning in some atom/radical reactions found in atmospheric pollution systems. Canadian Journal of Chemistry, 1983, 61, 906-911.	0.6	6
171	Reagent and product energy distributions for the reaction Fâ€,+â€,OH (ν)â€,→â€,HF(νâ€2)â€,+â€,O. Canadia Chemistry, 1983, 61, 912-915.	n Journal o	ofg
172	The reaction between oxygen and vinyl radicals. Journal of Chemical Physics, 1982, 77, 4777-4779.	1.2	15
173	Detailed energy partitioning in the decomposition of chemically energized C2H3F. Chemical Physics, 1982, 68, 95-107.	0.9	29
174	Cavitation-induced polymerization of nitrobenzene. The Journal of Physical Chemistry, 1979, 83, 3130-3135.	2.9	41