
Christophe Pin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping and Deposition of Dye–Molecule Nanoparticles in the Nanogap of a Plasmonic Antenna. ACS Omega, 2018, 3, 4878-4883.	3.5	34
2	Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Lab on A Chip, 2018, 18, 1750-1757.	6.0	31
3	Integrated plasmonic nanotweezers for nanoparticle manipulation. Optics Letters, 2016, 41, 3679.	3.3	26
4	Optofluidic Near-Field Optical Microscopy: Near-Field Mapping of a Silicon Nanocavity Using Trapped Microbeads. ACS Photonics, 2015, 2, 1410-1415.	6.6	21
5	Spin–Orbit Angular-Momentum Transfer from a Nanogap Surface Plasmon to a Trapped Nanodiamond. Nano Letters, 2021, 21, 6268-6273.	9.1	19
6	Localized ZnO Growth on a Gold Nanoantenna by Plasmon-Assisted Hydrothermal Synthesis. Nano Letters, 2020, 20, 389-394.	9.1	16
7	Optical Transport and Sorting of Fluorescent Nanodiamonds inside a Tapered Glass Capillary: Optical Sorting of Nanomaterials at the Femtonewton Scale. ACS Applied Nano Materials, 2020, 3, 4127-4134.	5.0	16
8	Seven at One Blow: Particle Cluster Stability in a Single Plasmonic Trap on a Silicon Waveguide. ACS Photonics, 2020, 7, 1942-1949.	6.6	11
9	Optofluidic taming of a colloidal dimer with a silicon nanocavity. Applied Physics Letters, 2014, 105, 171108.	3.3	10
10	Controlled optical manipulation and sorting of nanomaterials enabled by photonic and plasmonic nanodevices. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100534.	11.6	4
11	On-chip photonic tweezers for photonics, microfluidics, and biology. Proceedings of SPIE, 2017, , .	0.8	3
12	Optical transport of fluorescent diamond particles inside a tapered capillary. EPJ Web of Conferences, 2019, 215, 16002.	0.3	1
13	Near-field optical forces-assisted molecular nanoparticle deposition in the nanogap of plasmonic nanoantennas. Proceedings of SPIE, 2017, , .	0.8	0
14	Tunable optical lattices in the near-field of a few-mode nanophotonic waveguide. EPJ Web of Conferences, 2019, 215, 14001.	0.3	0
15	On-Chip Periodic Arrays of Optical Traps Based on the Superposition of Guided Modes in Silicon Waveguides. , 2019, , .		0
16	Nanodiamond optical sorting at the femtonewton scale inside a tapered glass capillary. , 2021, , .		0
17	Photothermal energy conversion in plasmonic nanoantennas as a new path for the local growth of ZnO in nanophotonic devices. , 2021, , .		0
18	Optical transport and sorting of fluorescent nanodiamonds inside a tapered glass capillary. , 2020, , .		0

# Ar	IRTICLE	IF	CITATIONS
19 Ph gro	hotothermal energy conversion in plasmonic nano gap antennas: application to localized ZnO prowth for nanophotonics. , 2020, , .		0