
Valentyn Oksenych

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broad-Spectrum Antivirals and Antiviral Drug Combinations. Viruses, 2022, 14, 301.	3.3	7
2	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	3.3	18
3	Mono- and combinational drug therapies for global viral pandemic preparedness. IScience, 2022, 25, 104112.	4.1	19
4	Acetyltransferases GCN5 and PCAF Are Required for B Lymphocyte Maturation in Mice. Biomolecules, 2022, 12, 61.	4.0	4
5	DrugVirus.info 2.0: an integrative data portal for broad-spectrum antivirals (BSA) and BSA-containing drug combinations (BCCs). Nucleic Acids Research, 2022, 50, W272-W275.	14.5	15
6	DNA Damage Response. Biomolecules, 2021, 11, 123.	4.0	2
7	Active Components of Commonly Prescribed Medicines Affect Influenza A Virus–Host Cell Interaction: A Pilot Study. Viruses, 2021, 13, 1537.	3.3	3
8	Nafamostat–Interferon-α Combination Suppresses SARS-CoV-2 Infection In Vitro and In Vivo by Cooperatively Targeting Host TMPRSS2. Viruses, 2021, 13, 1768.	3.3	15
9	Non-Homologous End Joining Factors XLF, PAXX and DNA-PKcs Maintain the Neural Stem and Progenitor Cell Population. Biomolecules, 2021, 11, 20.	4.0	5
10	Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses, 2021, 13, 2489.	3.3	20
11	Mediator of DNA Damage Checkpoint Protein 1 Facilitates V(D)J Recombination in Cells Lacking DNA Repair Factor XLF. Biomolecules, 2020, 10, 60.	4.0	14
12	Interaction between Fibroblasts and Immune Cells Following DNA Damage Induced by Ionizing Radiation. International Journal of Molecular Sciences, 2020, 21, 8635.	4.1	28
13	Genetic interaction between the nonâ€homologous endâ€joining factors during B and T lymphocyte development: In vivo mouse models. Scandinavian Journal of Immunology, 2020, 92, e12936.	2.7	14
14	Identification and Tracking of Antiviral Drug Combinations. Viruses, 2020, 12, 1178.	3.3	48
15	Potential Antiviral Options against SARS-CoV-2 Infection. Viruses, 2020, 12, 642.	3.3	92
16	Chemical, Physical and Biological Triggers of Evolutionary Conserved Bcl-xL-Mediated Apoptosis. Cancers, 2020, 12, 1694.	3.7	13
17	Discovery and development of safe-in-man broad-spectrum antiviral agents. International Journal of Infectious Diseases, 2020, 93, 268-276.	3.3	169
18	Leaky severe combined immunodeficiency in mice lacking non-homologous end joining factors XLF and MRI. Aging, 2020, 12, 23578-23597.	3.1	10

VALENTYN OKSENYCH

#	Article	IF	CITATIONS
19	Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis. Frontiers in Immunology, 2019, 10, 2186.	4.8	67
20	Genetic interaction between DNA repair factors <i>PAXX</i> , <i>XLF, XRCC4</i> and <i>DNAâ€PKcs</i> in human cells. FEBS Open Bio, 2019, 9, 1315-1326.	2.3	23
21	Low Temperature and Low UV Indexes Correlated with Peaks of Influenza Virus Activity in Northern Europe during 2010–2018. Viruses, 2019, 11, 207.	3.3	81
22	Generation of a Mouse Model Lacking the Non-Homologous End-Joining Factor Mri/Cyren. Biomolecules, 2019, 9, 798.	4.0	14
23	Synthetic lethality between DNA repair factors Xlf and Paxx is rescued by inactivation of Trp53. DNA Repair, 2019, 73, 164-169.	2.8	19
24	Normal development of mice lacking <scp>PAXX</scp> , the paralogue of <scp>XRCC</scp> 4 and <scp>XLF</scp> . FEBS Open Bio, 2018, 8, 426-434.	2.3	27
25	Robust <scp>DNA</scp> repair in <scp>PAXX</scp> â€deficient mammalian cells. FEBS Open Bio, 2018, 8, 442-448.	2.3	23
26	Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Research, 2018, 154, 174-182.	4.1	64
27	Synthetic lethality between murine DNA repair factors XLF and DNA-PKcs is rescued by inactivation of Ku70. DNA Repair, 2017, 57, 133-138.	2.8	21
28	Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins. Viruses, 2017, 9, 271.	3.3	39
29	Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair, 2014, 16, 11-22.	2.8	56
30	Reprint of "Functional overlaps between XLF and the ATM-dependent DNA double strand break response― DNA Repair, 2014, 17, 52-63.	2.8	3
31	Histone Methyltransferase DOT1L Drives Recovery of Gene Expression after a Genotoxic Attack. PLoS Genetics, 2013, 9, e1003611.	3.5	73
32	Functional redundancy between the XLF and DNA-PKcs DNA repair factors in V(D)J recombination and nonhomologous DNA end joining. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2234-2239.	7.1	72
33	Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2473-2478.	7.1	106
34	Functional redundancy between repair factor XLF and damage response mediator 53BP1 in V(D)J recombination and DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2455-2460.	7.1	68
35	ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature, 2011, 469, 250-254.	27.8	184
36	Two Sides of the Same Coin: TFIIH Complexes in Transcription and DNA Repair. Scientific World Journal, The, 2010, 10, 633-643.	2.1	16

3

VALENTYN OKSENYCH

#	Article	IF	CITATIONS
37	The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle, 2010, 9, 90-96.	2.6	65
38	Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO Journal, 2009, 28, 2971-2980.	7.8	99
39	Nucleotide Excision Repair Driven by the Dissociation of CAK from TFIIH. Molecular Cell, 2008, 31, 9-20.	9.7	146
40	Distinct Roles for the XPB/p52 and XPD/p44 Subcomplexes of TFIIH in Damaged DNA Opening during Nucleotide Excision Repair. Molecular Cell, 2007, 26, 245-256.	9.7	252