
Laurent Bultot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831567/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
2	AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Communications, 2018, 9, 374.	12.8	179
3	Mediumâ€chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyteâ€neuron lactate and ketone body shuttle systems. FASEB Journal, 2016, 30, 1913-1926.	0.5	119
4	Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.	6.0	103
5	AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochemical Journal, 2012, 443, 193-203.	3.7	98
6	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
7	Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E688-E696.	3.5	75
8	The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends in Endocrinology and Metabolism, 2018, 29, 827-840.	7.1	67
9	PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochemical Journal, 2013, 452, 531-543.	3.7	64
10	AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB Journal, 2019, 33, 12374-12391.	0.5	57
11	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
12	Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. Cellular Signalling, 2017, 34, 23-37.	3.6	50
13	Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H432-H445.	3.2	29
14	Myosin light chains are not a physiological substrate of AMPK in the control of cell structure changes. FEBS Letters, 2009, 583, 25-28.	2.8	27
15	AMP-Activated Protein Kinase and O-GlcNAcylation, Two Partners Tightly Connected to Regulate Key Cellular Processes. Frontiers in Endocrinology, 2018, 9, 519.	3.5	19
16	New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H838-H853.	3.2	18
17	The Regulation of Insulin-Stimulated Cardiac Glucose Transport via Protein Acetylation. Frontiers in Cardiovascular Medicine, 2018, 5, 70.	2.4	17
18	The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Communications Biology, 2022, 5, 349.	4.4	17

LAURENT BULTOT

#	Article	IF	CITATIONS
19	Protein <i>O</i> â€GlcNAcylation levels are regulated independently of dietary intake in a tissue and timeâ€specific manner during rat postnatal development. Acta Physiologica, 2021, 231, e13566.	3.8	11
20	Characterization and Quality Control of Antibodies Used in ChIP Assays. Methods in Molecular Biology, 2009, 567, 27-43.	0.9	10
21	An O-GlcNAcylomic Approach Reveals ACLY as a Potential Target in Sepsis in the Young Rat. International Journal of Molecular Sciences, 2021, 22, 9236.	4.1	9
22	Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. Journal of Natural Products, 2016, 79, 2856-2864.	3.0	7
23	Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants, 2022, 11, 723.	5.1	7
24	α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1032-H1043.	3.2	3
25	A new degree of complexi(n)ty in the regulation of GLUT4 trafficking. Biochemical Journal, 2021, 478, 1315-1319.	3.7	0
26	AMP-Activated Protein Kinase in Liver. , 2010, , 275-285.		0