Margus Pedaste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing student teachers' agency and using it for predicting commitment to teaching. European Journal of Teacher Education, 2022, 45, 600-616.	3.7	13
2	Exploring Teachers' Perceptions of Artificial Intelligence as a Tool to Support their Practice in Estonian K-12 Education. International Journal of Artificial Intelligence in Education, 2022, 32, 725-755.	5.5	39
3	What constitutes teachers' general pedagogical knowledge and how it can be assessed: A literature review. Teachers and Teaching: Theory and Practice, 2022, 28, 206-225.	1.9	6
4	How to Improve the Digital Competence for E-Learning?. Applied Sciences (Switzerland), 2022, 12, 6582.	2.5	7
5	An adaptive educational computer game: Effects on students' knowledge and learning attitude in computational thinking. Computers in Human Behavior, 2021, 114, 106575.	8.5	50
6	From Gaming to Computational Thinking: An Adaptive Educational Computer Game-Based Learning Approach. Journal of Educational Computing Research, 2021, 59, 383-409.	5.5	52
7	Teaching during COVID-19: The Decisions Made in Teaching. Education Sciences, 2021, 11, 47.	2.6	53
8	Understanding teacher design practices for digital inquiry–based science learning: the case of Go-Lab. Educational Technology Research and Development, 2021, 69, 417-444.	2.8	29
9	Towards a science inquiry test in primary education: development of items and scales. International Journal of STEM Education, 2021, 8, .	5.0	6
10	School Effectiveness in Multilingual Education: A Review of Success Factors. Education Sciences, 2021, 11, 193.	2.6	6
11	Data sharing practices and data availability upon request differ across scientific disciplines. Scientific Data, 2021, 8, 192.	5.3	110
12	The Role of Professional Integration in Higher Education IT Studies. , 2021, , 271-293.		1
13	Contextualizing Social Media Ecology and Its Pedagogical Affordances: The Perspective of High School Teachers. Electronic Journal of E-Learning, 2021, 19, pp471-489.	2.6	1
14	Supporting Self-Regulated Learning in Distance Learning Contexts at Higher Education Level: Systematic Literature Review. Frontiers in Psychology, 2021, 12, 792422.	2.1	21
15	TEACHER AGENCY FOLLOWING THE ECOLOGICAL MODEL: HOW IT IS ACHIEVED AND HOW IT COULD BE STRENGTHENED BY DIFFERENT TYPES OF REFLECTION. British Journal of Educational Studies, 2020, 68, 295-310.	1.3	70
16	Predicting course achievement of university students based on their procrastination behaviour on Moodle. Soft Computing, 2020, 24, 18777-18793.	3.6	26
17	Clustering Algorithms in an Educational Context: An Automatic Comparative Approach. IEEE Access, 2020, 8, 146994-147014.	4.2	10
18	Engaging Estonian primary school children in computational thinking through adaptive educational		5

games: A qualitative study. , 2020, , .

#	Article	IF	CITATIONS
19	Framework for Contemporary Inquiry-based Augmented Reality Learning. , 2020, , .		2
20	Written or video diary-which one to prefer in teacher education and why?. , 2020, , .		1
21	The relationship between performance and test-taking effort when measured with self-report or time-based instruments: A meta-analytic review. Educational Research Review, 2020, 31, 100335.	7.8	33
22	Editorial: Mission and scope of the journal Educational Research Review. Educational Research Review, 2020, 30, 100328.	7.8	4
23	Does it have to be easy, useful, or do we need something else? STEM teachers' attitudes towards mobile device use in teaching. Technology, Pedagogy and Education, 2020, 29, 511-526.	5.4	28
24	Mining Educational Data to Predict Students' Performance through Procrastination Behavior. Entropy, 2020, 22, 12.	2.2	67
25	Open learner models in supporting self-regulated learning in higher education: A systematic literature review. Computers and Education, 2020, 154, 103878.	8.3	64
26	What Is the Effect of Using Mobile Augmented Reality in K12 Inquiry-Based Learning?. Education Sciences, 2020, 10, 94.	2.6	36
27	Kaasava hariduse mudel alushariduse kontekstis: süstemaatiline kirjandusülevaade. Estonian Journal of Education, 2020, 8, 138-163.	0.1	3
28	A Model for Developing Computational Thinking Skills. Informatics in Education, 2020, 19, 113-128.	2.2	43
29	Teacher professional standards to support teacher quality and learning in Estonia. European Journal of Education, 2019, 54, 389-399.	2.8	14
30	Situational judgment test for measuring military tactical decision-making skills. Military Psychology, 2019, 31, 462-473.	1.1	2
31	Review of instruments measuring decision making performance in military tactical level battle situation context. Military Psychology, 2019, 31, 397-411.	1.1	4
32	The potential of open learner models to promote active thinking by enhancing selfâ€regulated learning in online higher education learning environments. British Journal of Educational Technology, 2019, 50, 2365-2386.	6.3	26
33	Complex Problem Solving as a Construct of Inquiry, Computational Thinking and Mathematical Problem Solving. , 2019, , .		3
34	AutoThinking: An Adaptive Computational Thinking Game. Lecture Notes in Computer Science, 2019, , 381-391.	1.3	21
35	Does Group Size Affect Students' Inquiry and Collaboration in Using Computer-Based Asymmetric Collaborative Simulations?. Lecture Notes in Computer Science, 2019, , 143-154.	1.3	3
36	Model-Based Inquiry in Computer-Supported Learning Environments: The Case of Go-Lab. , 2018, , 241-268.		6

ARTICLE IF CITATIONS The Academic, Social, and Professional Integration Profiles of Information Technology Students. ACM Transactions on Computing Education, 2018, 18, 1-19. How Can Advanced Technologies Support the Contemporary Learning Approach?., 2018, , . 38 8 SCIENCE TEACHERS' PERCEPTIONS OF THE EMERGENCE OF RESPONSIBLE RESEARCH AND INNOVATION IN SCHOOL. Journal of Baltic Science Education, 2018, 17, 590-604. Definitions and Conceptual Dimensions of Responsible Research and Innovation: A Literature Review. 40 2.9 267 Science and Engineering Ethics, 2017, 23, 1-19. A Review of Interactive Computer-Based Tasks in Large-Scale Studies: Can They Guide the Development of an Instrument to Assess Students' Digital Competence?. Communications in Computer and Information Science, 2017, , 148-158. Design and Evaluation of a Smart Device Science Lesson to Improve Students' Inquiry Skills. Lecture 42 1.3 4 Notes in Computer Science, 2017, , 23-32. University Teachers and Technology Mentoring â€" Why, How and for Whom?. , 2017, , . Tasks for Assessing Skills of Computational Thinking., 2017,,. 44 4 Integration of Estonian Higher Education Information Technology Students and Its Effect on 1.3 Graduation-Related Self-efficacy. Lecture Notes in Computer Science, 2017, , 435-448. Nutiseadmete kasutamise profiilid loodusainete ja matemaatika Ãuppimise kontekstis. Estonian Journal 46 0.1 6 of Education, 2017, 5, 99-129. Eessõna. Estonian Journal of Education, 2017, 5, 1-9. 0.1 Factors That Influence Students' Motivation to Start and to Continue Studying Information 48 2.4 33 Technology in Estonia. IEEE Transactions on Education, 2016, 59, 255-262. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment. Innovations in 0.3 Science Education and Technology, 2016, , 55-62. Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to 50 0.2 3 Improve Inquiry Learning. Springer Briefs in Education, 2016, , 17-20. An Instrument for Measuring Students' Perceived Digital Competence According to the DIGCOMP 1.3 Framework. Lecture Notes in Computer Science, 2016, , 233-244. 52 THE ROLE OF A REFLECTION TOOL IN ENHANCING STUDENTS' REFLECTION., 2016, , . 5 The Role of Programming Experience in ICT Students' Learning Motivation and Academic Achievement. 1.2 International Journal of Information and Education Technology, 2016, 6, 331-337. 54 DIMENSIONS OF RESPONSIBLE RESEARCH AND INNOVATION. INTED Proceedings, 2016, , . 0.0 0

#	Article	IF	CITATIONS
55	EXAMINING THE ADDED VALUE OF THE USE OF AN EXPERIMENT DESIGN TOOL AMONG SECONDARY STUDENTS WHEN EXPERIMENTING WITH A VIRTUAL LAB. , 2016, , .		0
56	Online tools and remote labs for making ICT more attractive for students to prevent dropout. , 2015, , .		1
57	Why do Students Choose to Study Information and Communications Technology?. Procedia, Social and Behavioral Sciences, 2015, 191, 2867-2872.	0.5	10
58	First-year dropout in ICT studies. , 2015, , .		39
59	How to Support the Development of Teachers' Practical Knowledge: Comparing Different Conditions. Procedia, Social and Behavioral Sciences, 2015, 191, 1205-1212.	0.5	8
60	Schools'Opinions about Implementing the Model of Innovation Schools. Procedia, Social and Behavioral Sciences, 2015, 191, 2049-2054.	0.5	0
61	Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 2015, 14, 47-61.	7.8	895
62	Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review. Educational Technology Research and Development, 2015, 63, 257-302.	2.8	111
63	A Model of Innovation Schools: Estonian Case-study. Procedia, Social and Behavioral Sciences, 2014, 112, 418-427.	0.5	10
64	Design principles for support in developing students' transformative inquiry skills in Web-based learning environments. Interactive Learning Environments, 2014, 22, 309-325.	6.4	17
65	Guided Reflection for Supporting the Development of Student Teachers' Practical Knowledge. Procedia, Social and Behavioral Sciences, 2014, 112, 314-322.	0.5	29
66	Guided Reflection to Support Quality of Reflection and Inquiry in Web-based Learning. Procedia, Social and Behavioral Sciences, 2014, 112, 242-251.	0.5	13
67	Supporting reflection in technology-enhanced learning. Educational Research Review, 2014, 11, 45-55.	7.8	57
68	Designing Interactive Scratch Content for Future E-books. Lecture Notes in Computer Science, 2014, , 236-242.	1.3	0
69	THE ROLE OF GENERAL INQUIRY KNOWLEDGE IN ENHANCING STUDENTS' TRANSFORMATIVE INQUIRY PROCESSES IN A WEB-BASED LEARNING ENVIRONMENT. Journal of Baltic Science Education, 2014, 13, 19-31.	1.0	11
70	Investigating Ecosystems as a Blended Learning Experience. Science, 2013, 340, 1537-1538.	12.6	15
71	An instrument for evaluating problem solving, inquiry and programming skills in the context of robotics education. , 2013, , .		0
72	LEARNING APPROACHES TO APPLYING ROBOTICS IN SCIENCE EDUCATION. Journal of Baltic Science Education, 2013, 12, 365-377.	1.0	92

#	Article	IF	CITATIONS
73	MODEL FOR GUIDING REFLECTION IN THE CONTEXT OF INQUIRY-BASED SCIENCE EDUCATION. Journal of Baltic Science Education, 2013, 12, 107-118.	1.0	19
74	How to determine the quality of students' reflections?. Studies in Higher Education, 2012, 37, 203-217.	4.5	87
75	Using scenarios to design complex technology-enhanced learning environments. Educational Technology Research and Development, 2012, 60, 883-901.	2.8	43
76	Educational Robotics and Inquiry Learning: A Pilot Study in a Web-Based Learning Environment. , 2011, ,		4
77	Interactions between Inquiry Processes in a Web-Based Learning Environment. , 2011, , .		14
78	Learning by creating and exchanging objects: The SCY experience. British Journal of Educational Technology, 2010, 41, 909-921.	6.3	68
79	Learning Activity Spaces: Towards Flexibility in Learning Design?. , 2009, , .		7
80	A Graphical Modeling Language for Computer-Based Learning Scenarios. , 2009, , .		0
81	The Factors Affecting Multimedia-Based Inquiry. , 2009, , 270-284.		0
82	Transforming Students' Inquiry Skills with Computer-Based Simulations. , 2008, , .		20
83	The formation of learners' semiosphere by authentic inquiry with an integrated learning object "Young Scientistâ€: Computers and Education, 2007, 49, 1357-1377.	8.3	5
84	Developing an effective support system for inquiry learning in a Web-based environment. Journal of Computer Assisted Learning, 2006, 22, 47-62.	5.1	74
85	The factors influencing the outcome of solving story problems in a web-based learning environment. Interactive Learning Environments, 2006, 14, 153-176.	6.4	10
86	Prediction of students' procrastination behaviour through their submission behavioural pattern in online learning. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	4.9	9
87	Does test-taking motivation predict test results in a high-stakes testing context?. Educational Research and Evaluation, 0, , 1-27.	1.6	2
88	School leaders' vision is the strongest predictor of their attitudes towards inclusive education practice. International Journal of Inclusive Education, 0, , 1-17.	2.6	8
89	Video-based collaborative learning: a pedagogical model and instructional design tool emerging from an international multiple case study. European Journal of Teacher Education, 0, , 1-25.	3.7	1