
Margus Pedaste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 2015, 14, 47-61.	7.8	895
2	Definitions and Conceptual Dimensions of Responsible Research and Innovation: A Literature Review. Science and Engineering Ethics, 2017, 23, 1-19.	2.9	267
3	Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review. Educational Technology Research and Development, 2015, 63, 257-302.	2.8	111
4	Data sharing practices and data availability upon request differ across scientific disciplines. Scientific Data, 2021, 8, 192.	5.3	110
5	LEARNING APPROACHES TO APPLYING ROBOTICS IN SCIENCE EDUCATION. Journal of Baltic Science Education, 2013, 12, 365-377.	1.0	92
6	How to determine the quality of students' reflections?. Studies in Higher Education, 2012, 37, 203-217.	4.5	87
7	Developing an effective support system for inquiry learning in a Web-based environment. Journal of Computer Assisted Learning, 2006, 22, 47-62.	5.1	74
8	TEACHER AGENCY FOLLOWING THE ECOLOGICAL MODEL: HOW IT IS ACHIEVED AND HOW IT COULD BE STRENGTHENED BY DIFFERENT TYPES OF REFLECTION. British Journal of Educational Studies, 2020, 68, 295-310.	1.3	70
9	Learning by creating and exchanging objects: The SCY experience. British Journal of Educational Technology, 2010, 41, 909-921.	6.3	68
10	Mining Educational Data to Predict Students' Performance through Procrastination Behavior. Entropy, 2020, 22, 12.	2.2	67
11	Open learner models in supporting self-regulated learning in higher education: A systematic literature review. Computers and Education, 2020, 154, 103878.	8.3	64
12	Supporting reflection in technology-enhanced learning. Educational Research Review, 2014, 11, 45-55.	7.8	57
13	Teaching during COVID-19: The Decisions Made in Teaching. Education Sciences, 2021, 11, 47.	2.6	53
14	From Gaming to Computational Thinking: An Adaptive Educational Computer Game-Based Learning Approach. Journal of Educational Computing Research, 2021, 59, 383-409.	5.5	52
15	An adaptive educational computer game: Effects on students' knowledge and learning attitude in computational thinking. Computers in Human Behavior, 2021, 114, 106575.	8.5	50
16	Using scenarios to design complex technology-enhanced learning environments. Educational Technology Research and Development, 2012, 60, 883-901.	2.8	43
17	A Model for Developing Computational Thinking Skills. Informatics in Education, 2020, 19, 113-128.	2.2	43
18	The Role of Programming Experience in ICT Students' Learning Motivation and Academic Achievement. International Journal of Information and Education Technology, 2016, 6, 331-337.	1.2	43

#	Article	IF	CITATIONS
19	First-year dropout in ICT studies. , 2015, , .		39
20	Exploring Teachers' Perceptions of Artificial Intelligence as a Tool to Support their Practice in Estonian K-12 Education. International Journal of Artificial Intelligence in Education, 2022, 32, 725-755.	5.5	39
21	What Is the Effect of Using Mobile Augmented Reality in K12 Inquiry-Based Learning?. Education Sciences, 2020, 10, 94.	2.6	36
22	Factors That Influence Students' Motivation to Start and to Continue Studying Information Technology in Estonia. IEEE Transactions on Education, 2016, 59, 255-262.	2.4	33
23	The relationship between performance and test-taking effort when measured with self-report or time-based instruments: A meta-analytic review. Educational Research Review, 2020, 31, 100335.	7.8	33
24	Guided Reflection for Supporting the Development of Student Teachers' Practical Knowledge. Procedia, Social and Behavioral Sciences, 2014, 112, 314-322.	0.5	29
25	Understanding teacher design practices for digital inquiry–based science learning: the case of Go-Lab. Educational Technology Research and Development, 2021, 69, 417-444.	2.8	29
26	Does it have to be easy, useful, or do we need something else? STEM teachers' attitudes towards mobile device use in teaching. Technology, Pedagogy and Education, 2020, 29, 511-526.	5.4	28
27	The potential of open learner models to promote active thinking by enhancing selfâ€regulated learning in online higher education learning environments. British Journal of Educational Technology, 2019, 50, 2365-2386.	6.3	26
28	Predicting course achievement of university students based on their procrastination behaviour on Moodle. Soft Computing, 2020, 24, 18777-18793.	3.6	26
29	AutoThinking: An Adaptive Computational Thinking Game. Lecture Notes in Computer Science, 2019, , 381-391.	1.3	21
30	Supporting Self-Regulated Learning in Distance Learning Contexts at Higher Education Level: Systematic Literature Review. Frontiers in Psychology, 2021, 12, 792422.	2.1	21
31	Transforming Students' Inquiry Skills with Computer-Based Simulations. , 2008, , .		20
32	MODEL FOR GUIDING REFLECTION IN THE CONTEXT OF INQUIRY-BASED SCIENCE EDUCATION. Journal of Baltic Science Education, 2013, 12, 107-118.	1.0	19
33	Design principles for support in developing students' transformative inquiry skills in Web-based learning environments. Interactive Learning Environments, 2014, 22, 309-325.	6.4	17
34	Investigating Ecosystems as a Blended Learning Experience. Science, 2013, 340, 1537-1538.	12.6	15
35	An Instrument for Measuring Students' Perceived Digital Competence According to the DIGCOMP Framework. Lecture Notes in Computer Science, 2016, , 233-244.	1.3	15
36	Interactions between Inquiry Processes in a Web-Based Learning Environment. , 2011, , .		14

#	Article	IF	CITATIONS
37	Teacher professional standards to support teacher quality and learning in Estonia. European Journal of Education, 2019, 54, 389-399.	2.8	14
38	Guided Reflection to Support Quality of Reflection and Inquiry in Web-based Learning. Procedia, Social and Behavioral Sciences, 2014, 112, 242-251.	0.5	13
39	Assessing student teachers' agency and using it for predicting commitment to teaching. European Journal of Teacher Education, 2022, 45, 600-616.	3.7	13
40	THE ROLE OF GENERAL INQUIRY KNOWLEDGE IN ENHANCING STUDENTS' TRANSFORMATIVE INQUIRY PROCESSES IN A WEB-BASED LEARNING ENVIRONMENT. Journal of Baltic Science Education, 2014, 13, 19-31.	1.0	11
41	The factors influencing the outcome of solving story problems in a web-based learning environment. Interactive Learning Environments, 2006, 14, 153-176.	6.4	10
42	A Model of Innovation Schools: Estonian Case-study. Procedia, Social and Behavioral Sciences, 2014, 112, 418-427.	0.5	10
43	Why do Students Choose to Study Information and Communications Technology?. Procedia, Social and Behavioral Sciences, 2015, 191, 2867-2872.	0.5	10
44	The Academic, Social, and Professional Integration Profiles of Information Technology Students. ACM Transactions on Computing Education, 2018, 18, 1-19.	3.5	10
45	Clustering Algorithms in an Educational Context: An Automatic Comparative Approach. IEEE Access, 2020, 8, 146994-147014.	4.2	10
46	Prediction of students' procrastination behaviour through their submission behavioural pattern in online learning. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	4.9	9
47	How to Support the Development of Teachers' Practical Knowledge: Comparing Different Conditions. Procedia, Social and Behavioral Sciences, 2015, 191, 1205-1212.	0.5	8
48	How Can Advanced Technologies Support the Contemporary Learning Approach?. , 2018, , .		8
49	School leaders' vision is the strongest predictor of their attitudes towards inclusive education practice. International Journal of Inclusive Education, 0, , 1-17.	2.6	8
50	Learning Activity Spaces: Towards Flexibility in Learning Design?. , 2009, , .		7
51	How to Improve the Digital Competence for E-Learning?. Applied Sciences (Switzerland), 2022, 12, 6582.	2.5	7
52	Model-Based Inquiry in Computer-Supported Learning Environments: The Case of Go-Lab. , 2018, , 241-268.		6
53	Towards a science inquiry test in primary education: development of items and scales. International Journal of STEM Education, 2021, 8, .	5.0	6
54	School Effectiveness in Multilingual Education: A Review of Success Factors. Education Sciences, 2021, 11, 193.	2.6	6

#	Article	IF	CITATIONS
55	Nutiseadmete kasutamise profiilid loodusainete ja matemaatika õppimise kontekstis. Estonian Journal of Education, 2017, 5, 99-129.	0.1	6
56	What constitutes teachers' general pedagogical knowledge and how it can be assessed: A literature review. Teachers and Teaching: Theory and Practice, 2022, 28, 206-225.	1.9	6
57	The formation of learners' semiosphere by authentic inquiry with an integrated learning object "Young Scientist― Computers and Education, 2007, 49, 1357-1377.	8.3	5
58	Engaging Estonian primary school children in computational thinking through adaptive educational games: A qualitative study. , 2020, , .		5
59	THE ROLE OF A REFLECTION TOOL IN ENHANCING STUDENTS' REFLECTION. , 2016, , .		5
60	Educational Robotics and Inquiry Learning: A Pilot Study in a Web-Based Learning Environment. , 2011, ,		4
61	Design and Evaluation of a Smart Device Science Lesson to Improve Students' Inquiry Skills. Lecture Notes in Computer Science, 2017, , 23-32.	1.3	4
62	Tasks for Assessing Skills of Computational Thinking. , 2017, , .		4
63	Review of instruments measuring decision making performance in military tactical level battle situation context. Military Psychology, 2019, 31, 397-411.	1.1	4
64	Editorial: Mission and scope of the journal Educational Research Review. Educational Research Review, 2020, 30, 100328.	7.8	4
65	SCIENCE TEACHERS' PERCEPTIONS OF THE EMERGENCE OF RESPONSIBLE RESEARCH AND INNOVATION IN SCHOOL. Journal of Baltic Science Education, 2018, 17, 590-604.	1.0	4
66	Complex Problem Solving as a Construct of Inquiry, Computational Thinking and Mathematical Problem Solving. , 2019, , .		3
67	Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to Improve Inquiry Learning. Springer Briefs in Education, 2016, , 17-20.	0.2	3
68	Kaasava hariduse mudel alushariduse kontekstis: süstemaatiline kirjandusülevaade. Estonian Journal of Education, 2020, 8, 138-163.	0.1	3
69	Does Group Size Affect Students' Inquiry and Collaboration in Using Computer-Based Asymmetric Collaborative Simulations?. Lecture Notes in Computer Science, 2019, , 143-154.	1.3	3
70	A Review of Interactive Computer-Based Tasks in Large-Scale Studies: Can They Guide the Development of an Instrument to Assess Students' Digital Competence?. Communications in Computer and Information Science, 2017, , 148-158.	0.5	2
71	Situational judgment test for measuring military tactical decision-making skills. Military Psychology, 2019, 31, 462-473.	1.1	2

72 Framework for Contemporary Inquiry-based Augmented Reality Learning. , 2020, , .

2

#	Article	IF	CITATIONS
73	Does test-taking motivation predict test results in a high-stakes testing context?. Educational Research and Evaluation, 0, , 1-27.	1.6	2
74	Integration of Estonian Higher Education Information Technology Students and Its Effect on Graduation-Related Self-efficacy. Lecture Notes in Computer Science, 2017, , 435-448.	1.3	2
75	Eessõna. Estonian Journal of Education, 2017, 5, 1-9.	0.1	2
76	Online tools and remote labs for making ICT more attractive for students to prevent dropout. , 2015, ,		1
77	Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment. Innovations in Science Education and Technology, 2016, , 55-62.	0.3	1
78	Written or video diary-which one to prefer in teacher education and why?. , 2020, , .		1
79	The Role of Professional Integration in Higher Education IT Studies. , 2021, , 271-293.		1
80	Contextualizing Social Media Ecology and Its Pedagogical Affordances: The Perspective of High School Teachers. Electronic Journal of E-Learning, 2021, 19, pp471-489.	2.6	1
81	Video-based collaborative learning: a pedagogical model and instructional design tool emerging from an international multiple case study. European Journal of Teacher Education, 0, , 1-25.	3.7	1
82	A Graphical Modeling Language for Computer-Based Learning Scenarios. , 2009, , .		0
83	Schools'Opinions about Implementing the Model of Innovation Schools. Procedia, Social and Behavioral Sciences, 2015, 191, 2049-2054.	0.5	0
84	University Teachers and Technology Mentoring $\hat{a} \in \mathbb{C}$ Why, How and for Whom?. , 2017, , .		0
85	The Factors Affecting Multimedia-Based Inquiry. , 2009, , 270-284.		0
86	An instrument for evaluating problem solving, inquiry and programming skills in the context of robotics education. , 2013, , .		0
87	Designing Interactive Scratch Content for Future E-books. Lecture Notes in Computer Science, 2014, , 236-242.	1.3	0
88	DIMENSIONS OF RESPONSIBLE RESEARCH AND INNOVATION. INTED Proceedings, 2016, , .	0.0	0
89	EXAMINING THE ADDED VALUE OF THE USE OF AN EXPERIMENT DESIGN TOOL AMONG SECONDARY STUDENTS WHEN EXPERIMENTING WITH A VIRTUAL LAB. , 2016, , .		Ο