

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4831265/publications.pdf Version: 2024-02-01

LINXINC

#	Article	IF	CITATIONS
1	Pd–O2 interaction and singlet oxygen formation in a novel reactive electrochemical membrane for ultrafast sulfamethoxazole oxidation. Chemical Engineering Journal, 2022, 428, 131194.	6.6	32
2	Recent advances in membrane biofilm reactor for micropollutants removal: Fundamentals, performance and microbial communities. Bioresource Technology, 2022, 343, 126139.	4.8	20
3	Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides. Journal of Colloid and Interface Science, 2022, 608, 864-872.	5.0	17
4	Influence of cations on As(III) removal from simulated groundwaters by double potential step chronoamperometry (DPSC) employing polyvinylferrocene (PVF) functionalized electrodes. Journal of Hazardous Materials, 2022, 424, 127472.	6.5	3
5	Mechanistic insight into the biofilm formation and process performance of a passive aeration ditch (PAD) for decentralized wastewater treatment. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	6
6	Direct Electron Transfer Coordinated by Oxygen Vacancies Boosts Selective Nitrate Reduction to N ₂ on a Co–CuO _{<i>x</i>} Electroactive Filter. Environmental Science & Technology, 2022, 56, 8673-8681.	4.6	39
7	Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). Water Research, 2021, 189, 116653.	5.3	61
8	Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. Environmental Science & Technology, 2021, 55, 655-664.	4.6	67
9	Redox-catalysis flow electrode desalination in an organic solvent. Journal of Materials Chemistry A, 2021, 9, 22254-22261.	5.2	18
10	Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. Environmental Science & amp; Technology, 2021, 55, 4243-4267.	4.6	125
11	Phosphate recovery as vivianite using a flow-electrode capacitive desalination (FCDI) and fluidized bed crystallization (FBC) coupled system. Water Research, 2021, 194, 116939.	5.3	52
12	Mechanistic insights into chemical conditioning by polyacrylamide with different charge densities and its impacts on sludge dewaterability. Chemical Engineering Journal, 2021, 410, 128425.	6.6	27
13	Development of a Mechanically Flexible 2D-MXene Membrane Cathode for Selective Electrochemical Reduction of Nitrate to N ₂ : Mechanisms and Implications. Environmental Science & Technology, 2021, 55, 10695-10703.	4.6	68
14	Flow anodic oxidation: Towards high-efficiency removal of aqueous contaminants by adsorbed hydroxyl radicals at 1.5 V vs SHE. Water Research, 2021, 200, 117259.	5.3	34
15	Direct electron transfer (DET) processes in a flow anode system–Energy-efficient electrochemical oxidation of phenol. Water Research, 2021, 203, 117547.	5.3	28
16	In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. Water Research, 2021, 203, 117522.	5.3	22
17	Kinetic Modeling-Assisted Mechanistic Understanding of the Catalytic Ozonation Process Using Cu–Al Layered Double Hydroxides and Copper Oxide Catalysts. Environmental Science & Technology, 2021, 55, 13274-13285.	4.6	24
18	Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. Water Research, 2021, 203, 117498.	5.3	18

JINXING

#	Article	IF	CITATIONS
19	Making Waves: Zero Liquid Discharge for Sustainable Industrial Effluent Management. Water (Switzerland), 2021, 13, 2852.	1.2	15
20	Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Research, 2020, 168, 115186.	5.3	87
21	The impact of absorbents on ammonia recovery in a capacitive membrane stripping system. Chemical Engineering Journal, 2020, 382, 122851.	6.6	51
22	Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system. Environmental Research, 2020, 180, 108861.	3.7	10
23	Management of concentrate and waste streams for membrane-based algal separation in water treatment: A review. Water Research, 2020, 183, 115969.	5.3	20
24	Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen. Environmental Science & Technology, 2020, 54, 12081-12091.	4.6	30
25	Exploring the essential factors of performance improvement in sludge membrane bioreactor technology coupled with symbiotic algae. Water Research, 2020, 181, 115843.	5.3	35
26	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	2.2	74
27	Effect of the Presence of Carbon in Ti ₄ O ₇ Electrodes on Anodic Oxidation of Contaminants. Environmental Science & amp; Technology, 2020, 54, 5227-5236.	4.6	58
28	Self-Sustained Visible-Light-Driven Electrochemical Redox Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32788-32796.	4.0	35
29	Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. Water Research, 2020, 173, 115580.	5.3	68
30	Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 2020, 401, 126111.	6.6	75
31	Carbon nanotubes in-situ cross-linking the activated carbon electrode for high-performance capacitive deionization. Separation and Purification Technology, 2020, 239, 116593.	3.9	35
32	Techniques for understanding mechanisms underlying membrane fouling. , 2020, , 81-102.		1
33	Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon. Water Research, 2020, 177, 115785.	5.3	63
34	Stimulatory effects on bacteria induced by chemical cleaning cause severe biofouling of membranes. Journal of Water Reuse and Desalination, 2020, 10, 82-94.	1.2	3
35	Modified Double Potential Step Chronoamperometry (DPSC) Method for As(III) Electro-oxidation and Concomitant As(V) Adsorption from Groundwaters. Environmental Science & Technology, 2019, 53, 9715-9724.	4.6	26
36	Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). Environmental Science & amp; Technology, 2019, 53, 13859-13867.	4.6	57

Jinxing

#	Article	IF	CITATIONS
37	Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. Environmental Science & Technology, 2019, 53, 13364-13373.	4.6	66
38	Implication of Non-electrostatic Contribution to Deionization in Flow-Electrode CDI: Case Study of Nitrate Removal From Contaminated Source Waters. Frontiers in Chemistry, 2019, 7, 146.	1.8	20
39	Ammonia-Rich Solution Production from Wastewaters Using Chemical-Free Flow-Electrode Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6480-6485.	3.2	80
40	Flow-Electrode CDI Removes the Uncharged Ca–UO ₂ –CO ₃ Ternary Complex from Brackish Potable Groundwater: Complex Dissociation, Transport, and Sorption. Environmental Science & Technology, 2019, 53, 2739-2747.	4.6	54
41	Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 2019, 299, 727-735.	2.6	87
42	Capacitive Membrane Stripping for Ammonia Recovery (CapAmm) from Dilute Wastewaters. Environmental Science and Technology Letters, 2018, 5, 43-49.	3.9	111
43	Modification of microfiltration membranes by alkoxysilane polycondensation induced quaternary ammonium compounds grafting for biofouling mitigation. Journal of Membrane Science, 2018, 549, 165-172.	4.1	64
44	Reinvestigation of membrane cleaning mechanisms using NaOCl: Role of reagent diffusion. Journal of Membrane Science, 2018, 550, 278-285.	4.1	30
45	Removal of Microcystis aeruginosa and Microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation. Chemical Engineering Journal, 2018, 348, 380-388.	6.6	104
46	Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters. Environmental Science & Technology, 2018, 52, 4117-4126.	4.6	110
47	Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 2018, 128, 314-330.	5.3	523
48	Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: Performance, mechanisms and implications. Applied Catalysis B: Environmental, 2018, 226, 83-92.	10.8	93
49	Microbial responses to transient shock loads of quaternary ammonium compounds with different length of alkyl chain in a membrane bioreactor. AMB Express, 2018, 8, 118.	1.4	10
50	Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. Environmental Science & Technology, 2018, 52, 14275-14285.	4.6	131
51	Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. Bioresource Technology, 2018, 269, 532-543.	4.8	94
52	Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening. Environmental Science & Technology, 2018, 52, 9350-9360.	4.6	146
53	Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Research, 2018, 144, 296-303.	5.3	135
54	Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. Water Research, 2018, 145, 220-230.	5.3	158

JINXING

#	Article	IF	CITATIONS
55	Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater. Journal of Hazardous Materials, 2017, 329, 66-76.	6.5	154
56	Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration: Mechanisms and Implications. Environmental Science & Technology, 2017, 51, 2757-2765.	4.6	76
57	Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes. Journal of Membrane Science, 2017, 537, 263-271.	4.1	34
58	Membrane biofouling control using polyvinylidene fluoride membrane blended with quaternary ammonium compound assembled on carbon material. Journal of Membrane Science, 2017, 539, 229-237.	4.1	36
59	Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO 2 /expanded perlite floating composites. Chemical Engineering Journal, 2017, 320, 253-263.	6.6	89
60	Insights into iron induced fouling of ion-exchange membranes revealed by a quartz crystal microbalance with dissipation monitoring. RSC Advances, 2017, 7, 36555-36561.	1.7	9
61	Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC). Water Research, 2017, 108, 356-364.	5.3	85
62	Antibiofouling Polyvinylidene Fluoride Membrane Modified by Quaternary Ammonium Compound: Direct Contact-Killing versus Induced Indirect Contact-Killing. Environmental Science & Technology, 2016, 50, 5086-5093.	4.6	86
63	Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization. Environmental Science & Technology, 2016, 50, 13495-13501.	4.6	122
64	The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants. Water Research, 2016, 105, 331-340.	5.3	46
65	High performance of N-doped TiO2-magnetic activated carbon composites under visible light illumination: Synthesis and application in three-dimensional photoelectrochemical process. Electrochimica Acta, 2016, 222, 1-11.	2.6	14
66	Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor. Applied Microbiology and Biotechnology, 2016, 100, 5109-5121.	1.7	46
67	Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species. Environmental Science & Technology, 2016, 50, 3820-3828.	4.6	124
68	Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species. Water Research, 2016, 88, 293-300.	5.3	112
69	Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. Electrochimica Acta, 2015, 176, 51-58.	2.6	104
70	A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors. Scientific Reports, 2015, 5, 9268.	1.6	92
71	Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment. Water Research, 2015, 78, 98-110.	5.3	105
72	Membrane bioreactors fed with different COD/N ratio wastewater: impacts on microbial community, microbial products, and membrane fouling. Environmental Science and Pollution Research, 2015, 22, 11436-11445.	2.7	67

Jinxing

#	Article	IF	CITATIONS
73	Formation and removal of dissolved organic nitrogen (DON) in membrane bioreactor and conventional activated sludge processes. Environmental Science and Pollution Research, 2015, 22, 12633-12643.	2.7	7
74	Occurrence and fate of potential pathogenic bacteria as revealed by pyrosequencing in a full-scale membrane bioreactor treating restaurant wastewater. RSC Advances, 2015, 5, 24469-24478.	1.7	18
75	Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities. PLoS ONE, 2014, 9, e93710.	1.1	25
76	Electrogenesis reduces the combustion efficiency of sewage sludge. Applied Energy, 2014, 114, 283-289.	5.1	20
77	Bioelectricity generation through microbial fuel cell using organic matters recovered from municipal wastewater. Environmental Progress and Sustainable Energy, 2014, 33, 290-297.	1.3	9
78	Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators. Journal of Power Sources, 2014, 272, 24-33.	4.0	27
79	Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 2014, 468, 276-307.	4.1	637
80	Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles. Journal of Membrane Science, 2014, 451, 169-176.	4.1	58
81	Enhanced power production from waste activated sludge in rotating-cathode microbial fuel cells: The effects of aquatic worm predation. Chemical Engineering Journal, 2014, 248, 415-421.	6.6	24
82	Identification of Microbial Communities in Open and Closed Circuit Bioelectrochemical MBRs by High-Throughput 454 Pyrosequencing. PLoS ONE, 2014, 9, e93842.	1.1	30
83	Recent advances in membrane bio-technologies for sludge reduction and treatment. Biotechnology Advances, 2013, 31, 1187-1199.	6.0	78
84	Disintegration and acidification of MBR sludge under alkaline conditions. Chemical Engineering Journal, 2013, 231, 206-213.	6.6	62
85	Potential Foulants and Fouling Indicators in MBRs: A Critical Review. Separation Science and Technology, 2013, 48, 22-50.	1.3	52
86	Power production from different types of sewage sludge using microbial fuel cells:ÂA comparative study with energetic and microbiological perspectives. Journal of Power Sources, 2013, 235, 280-288.	4.0	54
87	Recent advances in membrane fouling caused by extracellular polymeric substances: a mini-review. Desalination and Water Treatment, 2013, 51, 5121-5131.	1.0	23
88	Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Research, 2013, 47, 859-869.	5.3	218
89	Microbial communities in an anaerobic dynamic membrane bioreactor (AnDMBR) for municipal wastewater treatment: Comparison of bulk sludge and cake layer. Process Biochemistry, 2013, 48, 510-516.	1.8	90
90	Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chemical Engineering Journal, 2013, 219, 190-199.	6.6	72

Jinxing

#	Article	IF	CITATIONS
91	A Bioelectrochemicallyâ€Assisted Membrane Bioreactor for Simultaneous Wastewater Treatment and Energy Production. Chemical Engineering and Technology, 2013, 36, 2044-2050.	0.9	24
92	Analysis of Nitrification Efficiency and Microbial Community in a Membrane Bioreactor Fed with Low COD/N-Ratio Wastewater. PLoS ONE, 2013, 8, e63059.	1.1	32
93	Recent Advances in Microbial Fuel Cells Integrated with Sludge Treatment. Chemical Engineering and Technology, 2012, 35, 1733-1743.	0.9	34
94	Aqueous nitrate removal by D417 resin: thermodynamic, kinetic and response surface methodology studies. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 856-867.	0.8	10
95	Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chemical Engineering Journal, 2012, 179, 169-177.	6.6	59