Manfred SchrĶdl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4829514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of magnetically levitated rotors using stabilizing effects of gyroscopes. Mechanical Systems and Signal Processing, 2022, 166, 108431.	8.0	6
2	Stabilization of Active Magnetic Bearing Systems in the Case of Defective Sensors. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3672-3682.	5.8	10
3	On the Historical Development and Future Prospects of Various Types of Electric Mobility. Energies, 2021, 14, 1070.	3.1	15
4	Design Space Analysis Including Experimental Verification for an Electrical Machine Based on a Parametric and Functional IPMSM Model. IEEE Transactions on Industrial Electronics, 2021, 68, 7863-7873.	7.9	3
5	Saliency-Based Position Sensorless Control of a Heavily Cross-Saturated PMSM. , 2021, , .		2
6	Stabilization of a Magnetically Levitated Rotor in the Case of a Defective Radial Actuator. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2599-2609.	5.8	21
7	An Efficiency Analysis of a Ferrite Magnet assisted Synchronous Reluctance Machine for Low Power Drives including Flux Weakening. , 2020, , .		1
8	Stability- and Sensitivity-Analysis of a Sensorless Controlled Synchronous Reluctance Machine using the Back-EMF Model. , 2020, , .		1
9	Mechanical Field Weakening of a Multi-Rotor Permanent Magnet Synchronous Machine. , 2020, , .		0
10	Comparative analysis of salient pole and flux barrier rotor for synchronous reluctance machines including flux weakening range. Journal of Engineering, 2019, 2019, 4055-4059.	1.1	3
11	An Analysis of Ferrite Magnet Assisted Synchronous Reluctance Machines for Low Power Drives Including Flux Weakening. , 2019, , .		3
12	Space Vector Modulation Strategies for Self-Sensing Three-Phase Radial Active Magnetic Bearings. Actuators, 2019, 8, 41.	2.3	2
13	An Efficiency Analysis of a Salient Pole and a Flux Barrier Synchronous Reluctance Machine including Flux Weakening. , 2019, , .		1
14	Reduction of the 6th and 12th Harmonic in the Torque Ripple of a Salient Pole Synchronous Reluctance Machine. , 2019, , .		0
15	Sensorless control of a reluctance synchronous machine in the whole speed range without voltage pulse injections. , 2017, , .		19
16	Control of Active Magnetic Bearings in Turbomolecular Pumps for Rotors with Low Resonance Frequencies of the Blade Wheel. Lubricants, 2017, 5, 26.	2.9	10
17	Control of a flexible magnetic levitated rotor using the computed torque method in combination with stabilizing filters. , 2016, , .		2
18	Design and sensorless control of a reluctance synchronous machine for a magnetically levitated		4

⁸ drive. , 2015, , .

#	Article	IF	CITATIONS
19	Fully position sensorless control of a magnetically levitated Reluctance Synchronous Machine by three phase active magnetic bearings. , 2015, , .		1
20	Decoupled control of an active magnetic bearing system for a high gyroscopic rotor. , 2015, , .		13
21	Investigation of inverter-based losses and magnet-temperatures of a 1 MVA permanent magnet synchronous generator via a 25 kVA physical model. Elektrotechnik Und Informationstechnik, 2015, 132, 3-10.	1.1	0
22	Selfsensing unbalance rejection and reduction of the gyroscopic effect for an active magnetic bearing system. , 2015, , .		5
23	Comparison of PM-machines with ferrite and NdFeB magnets in terms of machine performance and sensorless start-up control. , 2013, , .		7
24	Advantages of PM-machines compared to induction machines in terms of efficiency and sensorless control in traction applications. , 2011, , .		18