
Philipp Weller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4829368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatilomics-Based Microbiome Evaluation of Fermented Dairy by Prototypic Headspace-Gas Chromatography–High-Temperature Ion Mobility Spectrometry (HS-GC-HTIMS) and Non-Negative Matrix Factorization (NNMF). Metabolites, 2022, 12, 299.	2.9	3
2	Pesticide handling and waste management: a case study on DDT and HCHs from the Southern Caucasus. SN Applied Sciences, 2022, 4, 1.	2.9	0
3	Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They?. Applied Sciences (Switzerland), 2022, 12, 3838.	2.5	4
4	Überwachung von Fermentationsprozessen durch Gaschromatographieâ€lonenmobilitÃæspektrometrie (GCâ€IMS) und maschinelles Lernen. Lebensmittelchemie, 2022, 76, .	0.0	0
5	gc-ims-tools – A new Python package for chemometric analysis of GC–IMS data. Food Chemistry, 2022, 394, 133476.	8.2	15
6	A paper-based colorimetric sensor array for discrimination of monofloral European honeys based on gold nanoparticles and chemometrics data analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119076.	3.9	19
7	Improving manganese circular economy from cellulose by chelation with siderophores immobilized to magnetic microbeads. Environment, Development and Sustainability, 2021, 23, 8252-8271.	5.0	1
8	Volatilomic Profiling of <i>Citrus</i> Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 2021, 69, 1727-1738.	5.2	24
9	Nitrogen monoxide as dopant for enhanced selectivity of isomeric monoterpenes in drift tube ion mobility spectrometry with 3H ionization. Analytical and Bioanalytical Chemistry, 2021, 413, 3551-3560.	3.7	7
10	Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry, 2021, 11, 285-302.	1.9	9
11	gcimsâ€ŧools Vorschau eines Pythonâ€Moduls zur multivariaten Auswertung von GCâ€IMS Daten. Lebensmittelchemie, 2021, 75, S054.	0.0	0
12	Non-Targeted Screening Approaches for Profiling of Volatile Organic Compounds Based on Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) and Machine Learning. Molecules, 2021, 26, 5457.	3.8	30
13	MIR spectroscopy versus MALDI-ToF-MS for authenticity control of honeys from different botanical origins based on soft independent modelling by class analogy (SIMCA) – A clash of techniques?. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120225.	3.9	8
14	Comparison of PLSR, MCR-ALS and Kernel-PLSR for the quantification of allergenic fragrance compounds in complex cosmetic products based on nonlinear 2D GC-IMS data. Chemometrics and Intelligent Laboratory Systems, 2020, 205, 104128.	3.5	16
15	Gas-phase volatilomic approaches for quality control of brewing hops based on simultaneous GC-MS-IMS and machine learning. Analytical and Bioanalytical Chemistry, 2020, 412, 7085-7097.	3.7	13
16	Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile?. Analytical and Bioanalytical Chemistry, 2019, 411, 6005-6019.	3.7	51
17	Paper spray high-resolution accurate mass spectrometry for quantitation of voriconazole in equine tears. Analytical and Bioanalytical Chemistry, 2019, 411, 5187-5196.	3.7	5
18	Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM. Food Chemistry, 2019, 278, 720-728.	8.2	113

PHILIPP WELLER

#	Article	IF	CITATIONS
19	Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative to ¹ H NMR Profiling for Assessment of the Authenticity of Honey. Analytical Chemistry, 2018, 90, 1777-1785.	6.5	117
20	Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Analytical and Bioanalytical Chemistry, 2017, 409, 3933-3942.	3.7	121
21	How Do Modern Pesticide Treatments Influence the Mobility of Old Incurred DDT Contaminations in Agricultural Soils?. Journal of Agricultural and Food Chemistry, 2016, 64, 7445-7451.	5.2	19
22	Isotopic Fingerprinting for the Authenticity Control of Crop Protection Active Compounds using the Representative Insecticide Fipronil. Journal of Agricultural and Food Chemistry, 2011, 59, 4365-4370.	5.2	8
23	Comparison of plasma responses in human subjects after the ingestion of 3R,3R′-zeaxanthin dipalmitate from wolfberry (Lycium barbarum) and non-esterified 3R,3R′-zeaxanthin using chiral high-performance liquid chromatography. British Journal of Nutrition, 2004, 91, 707-713.	2.3	75
24	Identification and Quantification of Zeaxanthin Esters in Plants Using Liquid Chromatographyâ`'Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2003, 51, 7044-7049.	5.2	138
25	Plasma response to a single dose of dietary β-cryptoxanthin esters from papaya (<i>Carica papaya</i> L.) or non-esterified β-cryptoxanthin in adult human subjects: a comparative study. British Journal of Nutrition, 2003, 90, 795-801.	2.3	86