List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48289/publications.pdf Version: 2024-02-01

ALANI CHAFFE

#	Article	IF	CITATIONS
1	Energy efficient method of supercritical extraction of oil from oil shale. Energy Conversion and Management, 2022, 252, 115108.	4.4	16
2	Pyrolysis of fast growing wood Macaranga gigantea: Product characterisation and kinetic study. Fuel, 2022, 315, 123182.	3.4	9
3	Rh/ZrO2@C(MIL) catalytic activity and TEM images. CO2 conversion performance and structural systematic evaluation of novel catalysts derived from Zr-MOF metallated with Ru, Rh, Pd or In. Microporous and Mesoporous Materials, 2022, 336, 111855.	2.2	5
4	Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, 2021, 371, 120-133.	2.2	11
5	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	2.1	7
6	Pyrolysis-GC/MS Analysis of Fast Growing Wood Macaranga Species. Indonesian Journal of Science and Technology, 2021, 6, 141-158.	0.7	2
7	Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst under mild pH conditions. Green Chemistry, 2021, 23, 3028-3038.	4.6	43
8	Study on combustion performance of hydrothermally dewatered lignite by thermal analysis technique. Fuel, 2021, 285, 119217.	3.4	20
9	A comparison of the thermal conversion behaviour of marine kerogens isolated from oil shales by NaOH-HCl and HCl-HF methods. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105023.	2.6	7
10	Characterisation of coal density fractions separated from Victorian brown coal by reflux classification. Fuel, 2021, 292, 120385.	3.4	3
11	Metal nanoparticles formed by thermal transformation of M-MIL140C (M=In, Rh, Pd). Microporous and Mesoporous Materials, 2021, 324, 111264.	2.2	5
12	Molecular Clustering in Formaldehyde–Methanol–Water Mixtures Revealed by High-Intensity, High-q Small-Angle Neutron Scattering. Journal of Physical Chemistry Letters, 2021, 12, 480-486.	2.1	1
13	Solvation behaviour and micro-phase structure of formaldehyde-methanol-water mixtures. Journal of Molecular Liquids, 2020, 301, 112444.	2.3	3
14	Dimethoxymethane Production via Catalytic Hydrogenation of Carbon Monoxide in Methanol Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 2081-2092.	3.2	14
15	Surfactant-controlled crystal growth of metal–organic frameworks and their nanoparticle pyrolysis products. Materialia, 2020, 13, 100849.	1.3	1
16	Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 2020, 12, 12317-12328.	2.8	23
17	Upgrading Microalgal Biocrude Using NiMo/Al-SBA-15 as a Catalyst. Energy & Fuels, 2020, 34, 4618-4631.	2.5	9
18	Structural Characteristics of Low-Aromaticity Marine and Lacustrine Oil Shales and their NaOH-HCl Kerogens Determined Using 13C NMR and XPS. Australian Journal of Chemistry, 2020, 73, 1237.	0.5	10

#	Article	IF	CITATIONS
19	Desorption Process for Capturing CO ₂ from Air with Supported Amine Sorbent. Industrial & Engineering Chemistry Research, 2019, 58, 15606-15618.	1.8	36
20	Catalytic hydropyrolysis of El-Lajjun and Julia Creek shale oils using flow-through and sealed autoclaves. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104682.	2.6	2
21	Technoeconomic Evaluation of a Process Capturing CO2 Directly from Air. Processes, 2019, 7, 503.	1.3	15
22	ISOLATION OF ORGANIC MATTER BY THE NAOH-HCL METHOD FROM TWO MARINE OIL SHALES USING OVEN AND SEALED AUTOCLAVE TECHNIQUES. Oil Shale, 2019, 36, 197.	0.5	4
23	A Multifunctional, Chargeâ€Neutral, Chiral Octahedral M ₁₂ L ₁₂ Cage. Chemistry - A European Journal, 2019, 25, 8489-8493.	1.7	21
24	<i>p</i> -Xylylenediamine derived ligands as flexible connectors in the design of porous coordination polymers. CrystEngComm, 2019, 21, 3074-3085.	1.3	1
25	UV-induced colour generation of pulp and paper mill effluents as a proxy of ligno-cellulosic biorefinery wastewater. Journal of Water Process Engineering, 2019, 29, 100781.	2.6	9
26	CO ₂ Capture from Air Using Pelletized Polyethylenimine Impregnated MCF Silica. Industrial & Engineering Chemistry Research, 2019, 58, 3293-3303.	1.8	42
27	Transformation behaviors of C, H, O, N and S in lignite during hydrothermal dewatering process. Fuel, 2019, 236, 228-235.	3.4	35
28	The effect of densification with alkali hydroxides on brown coal self-heating behaviour and physico-chemical properties. Fuel, 2019, 240, 299-308.	3.4	18
29	Separation and analysis of maceral concentrates from Victorian brown coal. Fuel, 2019, 242, 232-242.	3.4	25
30	A comparison of the NaOH-HCl and HCl-HF methods of extracting kerogen from two different marine oil shales. Fuel, 2019, 236, 880-889.	3.4	20
31	Effect of temperature on the solubility of Victorian brown coal in the ionic liquid DIMCARB. Fuel, 2018, 216, 752-759.	3.4	20
32	Long time, low temperature pyrolysis of El-Lajjun oil shale. Journal of Analytical and Applied Pyrolysis, 2018, 130, 135-141.	2.6	35
33	The effect of densification with NaOH on brown coal thermal oxidation behaviour and structure. Fuel, 2018, 216, 548-558.	3.4	29
34	Long-Time-Period, Low-Temperature Reactions of Green River Oil Shale. Energy & Fuels, 2018, 32, 4808-4822.	2.5	16
35	Catalytic hydrotreating of bio-oil derived from Chlorococcum sp IOP Conference Series: Earth and Environmental Science, 2018, 144, 012037.	0.2	0
36	High-Connectivity Approach to a Hydrolytically Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. Chemistry of Materials, 2018, 30, 6614-6618.	3.2	19

#	Article	IF	CITATIONS
37	Characterisation of the products of low temperature pyrolysis of Victorian brown coal in a semi-continuous/flow through system. Fuel, 2018, 234, 1422-1430.	3.4	11
38	CO ₂ adsorption on SBA-15: A molecular modelling. IOP Conference Series: Earth and Environmental Science, 2018, 144, 012045.	0.2	1
39	Utilization of raw and dried Victorian brown coal in the adsorption of model dyes from solution. Journal of Water Process Engineering, 2017, 15, 43-48.	2.6	22
40	Shaped polyethyleneimine sorbents for CO 2 capture. Microporous and Mesoporous Materials, 2017, 238, 14-18.	2.2	18
41	Oxygen uptake, selectivity and reversibility of Tb–CeO2 mixed oxides for air separation. Adsorption, 2017, 23, 465-475.	1.4	Ο
42	Correlations between Oxygen Uptake and Vacancy Concentration in Pr-Doped CeO ₂ . ACS Omega, 2017, 2, 2544-2551.	1.6	28
43	The effect of densification on brown coal physical properties and its spontaneous combustion propensity. Fuel, 2017, 193, 54-64.	3.4	38
44	Shaped Silica-polyethyleneimine Composite Sorbents for CO2 Capture via Adsorption. Energy Procedia, 2017, 114, 2219-2227.	1.8	5
45	Coordination polymers from a flexible alkyldiamine-derived ligand. CrystEngComm, 2017, 19, 5137-5145.	1.3	6
46	Aminopropyl-Functionalized Silica CO ₂ Adsorbents via Sonochemical Methods. Journal of Chemistry, 2016, 2016, 1-10.	0.9	13
47	Vacancy Generation and Oxygen Uptake in Cu-Doped Pr-CeO ₂ Materials using Neutron and in Situ X-ray Diffraction. Inorganic Chemistry, 2016, 55, 12595-12602.	1.9	13
48	Attempts to produce blast furnace coke from Victorian brown coal. 3. Hydrothermally dewatered and acid washed coal as a blast furnace coke precursor. Fuel, 2016, 180, 597-605.	3.4	15
49	Hydrothermal dewatering of a Chinese lignite and properties of the solid products. Fuel, 2016, 180, 473-480.	3.4	94
50	Attempts to produce blast furnace coke from Victorian brown coal. 4. Low surface area char from alkali treated brown coal. Fuel, 2016, 186, 320-327.	3.4	7
51	Porous Polyrotaxane Coordination Networks Containing Two Distinct Conformers of a Discontinuously Flexible Ligand. Inorganic Chemistry, 2016, 55, 10467-10474.	1.9	11
52	Highly Ordered Hierarchical Mesoporous MnCo ₂ O ₄ with Cubic <i>1</i> î±3 <i>d</i> Symmetry for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23976-23983.	1.5	34
53	Study on the Relationship Between Pore Structure and Water Forms in Pore Using Partially Gasified Lignite Char. Energy & Fuels, 2016, 30, 8875-8885.	2.5	22
54	Comparison of sample preparation methods for the GCâ¿MS analysis of monoethanolamine (MEA) degradation products generated during post-combustion capture of CO 2. International Journal of Greenhouse Gas Control, 2016, 52, 201-214.	2.3	1

#	Article	IF	CITATIONS
55	Hydrogen storage capacity of selected activated carbon electrodes made from brown coal. International Journal of Hydrogen Energy, 2016, 41, 23099-23108.	3.8	23
56	Cu-Enhanced Surface Defects and Lattice Mobility of Pr-CeO ₂ Mixed Oxides. Journal of Physical Chemistry C, 2016, 120, 27996-28008.	1.5	9
57	Thermochemical Reactions of Blue Gum and Fossil Wood with CO/H2O: Some Mechanistic Comments. Energy & Fuels, 2016, , .	2.5	1
58	Coordination Chemistry and Structural Dynamics of a Long and Flexible Piperazine-Derived Ligand. Inorganic Chemistry, 2016, 55, 6692-6702.	1.9	18
59	A comparison of acid treatment in the dewatering of Chinese and Australian lignites by mechanical thermal expression at high temperatures. Fuel Processing Technology, 2016, 144, 282-289.	3.7	11
60	Pyrolysis-GC/MS analysis of biomass and the bio-oils produced from CO/H 2 O reactions. Journal of Analytical and Applied Pyrolysis, 2016, 120, 154-164.	2.6	22
61	Oxygen Uptake of Tb–CeO ₂ : Analysis of Ce ³⁺ and Oxygen Vacancies. Journal of Physical Chemistry C, 2016, 120, 14382-14389.	1.5	37
62	Attempts to produce blast furnace coke from Victorian brown coal. 2. Hot briquetting, air curing and higher carbonization temperature. Fuel, 2016, 173, 268-276.	3.4	25
63	Selective CO2 uptake and vapor adsorption study within Sn(iv) porphyrin crystals. CrystEngComm, 2016, 18, 1515-1522.	1.3	2
64	Ambient temperature solubilisation of brown coal in ammonium carbamate ionic liquids. Fuel, 2016, 166, 106-115.	3.4	16
65	An adsorption study on STA-16(Co). Microporous and Mesoporous Materials, 2016, 222, 169-177.	2.2	2
66	A versatile modelling approach to determine the hydrophobicity of peptides at the atomic level. Molecular Simulation, 2016, 42, 257-269.	0.9	2
67	Structural chemistry and selective CO ₂ uptake of a piperazine-derived porous coordination polymer. CrystEngComm, 2015, 17, 2196-2203.	1.3	9
68	Modulating Porosity through Conformer-Dependent Hydrogen Bonding in Copper(II) Coordination Polymers. Crystal Growth and Design, 2015, 15, 3417-3425.	1.4	23
69	Recovery of shale oil condensate from different oil shales using a flow-through apparatus. Fuel Processing Technology, 2015, 133, 167-172.	3.7	14
70	An attempt to produce blast furnace coke from Victorian brown coal. Fuel, 2015, 148, 104-111.	3.4	45
71	Improvement in liquid fuel product quality from reactions of grape marc with CO/H2O. Fuel, 2015, 159, 234-240.	3.4	8
72	The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492, 471-477.	4.1	29

#	Article	IF	CITATIONS
73	Evaluation of methods for monitoring MEA degradation during pilot scale post-combustion capture of CO2. International Journal of Greenhouse Gas Control, 2015, 39, 407-419.	2.3	24
74	High solubility of Victorian brown coal in â€~distillable' ionic liquid DIMCARB. Fuel, 2015, 158, 23-34.	3.4	20
75	Coordination polymers from a highly flexible alkyldiamine-derived ligand: structure, magnetism and gas adsorption studies. Dalton Transactions, 2015, 44, 17494-17507.	1.6	29
76	Ewald Summation for Molecular Simulations. Journal of Chemical Theory and Computation, 2015, 11, 3684-3695.	2.3	108
77	Thermo-chemical reactions of algae, grape marc and wood chips using a semi-continuous/flow-through system. Fuel, 2015, 158, 927-936.	3.4	6
78	Investigation of the capacity decay of a CdO–NaI mixed sorbent for pre-combustion CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 5162-5175.	5.2	10
79	Monoethanolamine Degradation during Pilot-Scale Post-combustion Capture of CO ₂ from a Brown Coal-Fired Power Station. Energy & Fuels, 2015, 29, 7441-7455.	2.5	23
80	Primary sources and accumulation rates of inorganic anions and dissolved metals in a MEA absorbent during PCC at a brown coal-fired power station. International Journal of Greenhouse Gas Control, 2015, 41, 239-248.	2.3	13
81	Effect of Syngas Constituents on CdO- and MgO-Based Sorbents for Pre-combustion CO2 Capture. Energy & Fuels, 2015, 29, 5909-5918.	2.5	8
82	The structure and reactivity of a low-sulfur lacustrine oil shale (Colorado U.S.A.) compared with those of a high-sulfur marine oil shale (Julia Creek, Queensland, Australia). Fuel Processing Technology, 2015, 135, 91-98.	3.7	22
83	Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 456-466.	1.5	37
84	Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study. Biomass and Bioenergy, 2015, 76, 141-157.	2.9	21
85	Characterisation of the phase-transformation behaviour of Ce ₂ O(CO ₃) ₂ ·H ₂ O clusters synthesised from Ce(NO ₃) ₃ ·6H ₂ O and urea. Powder Diffraction, 2014, 29, S84-S88.	0.4	4
86	Improvements in the Pre-Combustion Carbon Dioxide Sorption Capacity of a Magnesium Oxide–Cesium Carbonate Sorbent. Energy & Fuels, 2014, 28, 5284-5295.	2.5	8
87	Formation of a non-porous cobalt-phosphonate framework by small pH change in the preparation of the microporous STA-16(Co). CrystEngComm, 2014, 16, 6296-6299.	1.3	4
88	Multiple sorption cycles evaluation of cadmium oxide–alkali metal halide mixtures for pre-combustion CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 4299-4308.	5.2	7
89	Metal–organic frameworks as stationary phases for mixed-mode separation applications. Chemical Communications, 2014, 50, 3735.	2.2	47
90	Quantification of Aqueous Monoethanolamine Concentration by Gas Chromatography for Postcombustion Capture of CO ₂ . Industrial & Engineering Chemistry Research, 2014, 53, 4805-4811.	1.8	9

#	Article	IF	CITATIONS
91	Reactions with CO/H ₂ O of Two Marine Algae and Comparison with Reactions under H ₂ and N ₂ . Energy & Fuels, 2014, 28, 3143-3156.	2.5	14
92	Multidimensional and comprehensive two-dimensional gas chromatography of dichloromethane soluble products from a high sulfur Jordanian oil shale. Talanta, 2014, 120, 55-63.	2.9	24
93	CO2 adsorption by amine modified siliceous mesostructured cellular foam (MCF) in humidified gas. Microporous and Mesoporous Materials, 2014, 186, 84-93.	2.2	71
94	A comparison of the structure and reactivity of five Jordanian oil shales from different locations. Fuel, 2014, 119, 313-322.	3.4	23
95	Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces. Computers and Fluids, 2014, 97, 31-39.	1.3	26
96	Biorefinery process water effluent treatments by salt coagulation. Biomass and Bioenergy, 2013, 56, 189-196.	2.9	11
97	Cadmium oxide/alkali metal halide mixtures – a potential high capacity sorbent for pre-combustion CO2 capture. Journal of Materials Chemistry A, 2013, 1, 10962.	5.2	14
98	Nanoscale Structural Investigation of Cs ₂ CO ₃ -Doped MgO Sorbent for CO ₂ Capture at Moderate Temperature. Journal of Physical Chemistry C, 2013, 117, 17514-17520.	1.5	55
99	Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: Potential application for sulfur speciation in shale oil. Analytica Chimica Acta, 2013, 803, 174-180.	2.6	23
100	Chemical Characterization of MEA Degradation in PCC pilot plants operating in Australia. Energy Procedia, 2013, 37, 877-882.	1.8	13
101	SBA-15 supported cobalt oxide species: Synthesis, morphology and catalytic oxidation of cyclohexanol using TBHP. Journal of Molecular Catalysis A, 2013, 379, 277-286.	4.8	18
102	Impact of preparation methods on SBA-15 supported low cobalt-content composites: Structure and catalytic activity. Journal of Molecular Catalysis A, 2013, 377, 115-122.	4.8	21
103	Comparison of the yields and structure of fuels derived from freshwater algae (torbanite) and marine algae (El-Lajjun oil shale). Fuel, 2013, 105, 83-89.	3.4	20
104	Thermal Treatment of Algae for Production of Biofuel. Energy & Fuels, 2013, 27, 1926-1950.	2.5	54
105	Comparison of Conventional and HF-Free-Synthesized MIL-101 for CO ₂ Adsorption Separation and Their Water Stabilities. Energy & amp; Fuels, 2013, 27, 7612-7618.	2.5	26
106	Silica/Polyethyleneimine Composite Adsorbent S-PEI for CO2Capture by Vacuum Swing Adsorption (VSA). ACS Symposium Series, 2012, , 177-205.	0.5	9
107	Mesoporous Silica SBA-15 Supported Co3O4 Nanorods as Efficient Liquid Phase Oxidative Catalysts. Topics in Catalysis, 2012, 55, 571-579.	1.3	28
108	Evaluation of several methods of extraction of oil from a Jordanian oil shale. Fuel, 2012, 92, 281-287.	3.4	32

#	Article	IF	CITATIONS
109	Mechanical/thermal dewatering of lignite. Part 4: Physico-chemical properties and pore structure during an acid treatment within the MTE process. Fuel, 2012, 93, 433-442.	3.4	54
110	The molecular representations of coal $\hat{a} \in A$ review. Fuel, 2012, 96, 1-14.	3.4	550
111	Lignite clean up of magnesium bisulphite pulp mill effluent as a proxy for aqueous discharge from a ligno-cellulosic biorefinery. Biomass and Bioenergy, 2012, 36, 411-418.	2.9	11
112	Phase and morphological segregation in Ti-MCM-41. Microporous and Mesoporous Materials, 2012, 151, 466-473.	2.2	4
113	Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. Journal of Molecular Catalysis A, 2012, 358, 79-88.	4.8	112
114	Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control, 2011, 5, 634-639.	2.3	126
115	Pyrolysis of Phenethyl Phenyl Ether Tethered in Mesoporous Silica. Effects of Confinement and Surface Spacer Molecules on Product Selectivity. Journal of Organic Chemistry, 2011, 76, 6014-6023.	1.7	12
116	Modeling gas separation in metal-organic frameworks. Adsorption, 2011, 17, 255-264.	1.4	20
117	Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical Engineering Research and Design, 2011, 89, 1647-1657.	2.7	79
118	Micro-channel development and hydrogen adsorption properties in templated microporous carbons containing platinum nanoparticles. Carbon, 2011, 49, 1305-1317.	5.4	30
119	Simulations of model metal-organic frameworks for the separation of carbon dioxide. Energy Procedia, 2011, 4, 568-575.	1.8	6
120	PEI modified mesocellular siliceous foam: A novel sorbent for CO2. Energy Procedia, 2011, 4, 839-843.	1.8	8
121	Characterisation of lignite as an industrial adsorbent. Fuel, 2011, 90, 1567-1574.	3.4	65
122	The utility of coal molecular models. Fuel Processing Technology, 2011, 92, 718-728.	3.7	181
123	Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Processing Technology, 2011, 92, 983-991.	3.7	51
124	Molecular dynamics modelling of tethered organics in confined spaces. Molecular Simulation, 2011, 37, 1266-1275.	0.9	2
125	CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous and Mesoporous Materials, 2010, 132, 305-310.	2.2	103
126	Structural characterisation of Middle Jurassic, high-volatile bituminous Walloon Subgroup coals and correlation with the coal seam gas content. Fuel, 2010, 89, 3241-3249.	3.4	7

#	Article	IF	CITATIONS
127	Partial Exchange of Fe(III) Montmorillonite with Hexadecyltrimethylammonium Cation Increases Catalytic Activity for Hydrophobic Substrates. Langmuir, 2010, 26, 4258-4265.	1.6	14
128	Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption, 2009, 15, 429-437.	1.4	55
129	CO2 adsorption by PAMAM dendrimers: Significant effect of impregnation into SBA-15. Microporous and Mesoporous Materials, 2009, 123, 140-149.	2.2	57
130	The remediation of MTE water by combined anaerobic digestion and chemical treatment. Fuel, 2009, 88, 1786-1792.	3.4	18
131	The spontaneous combustion behavior of some low rank coals and a range of dried products. Fuel, 2009, 88, 1650-1655.	3.4	55
132	Ordered micro-porous carbon molecular sieves containing well-dispersed platinum nanoparticles for hydrogen storage. Microporous and Mesoporous Materials, 2009, 119, 39-46.	2.2	41
133	Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia, 2009, 1, 1265-1271.	1.8	67
134	Modeling gas adsorption in metal organic frameworks. Energy Procedia, 2009, 1, 1273-1280.	1.8	9
135	CO ₂ Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X). Energy & Fuels, 2009, 23, 2785-2789.	2.5	397
136	MTE water remediation using Loy Yang brown coal as a filter bed adsorbent. Fuel, 2008, 87, 894-904.	3.4	18
137	Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials, 2008, 111, 536-543.	2.2	101
138	Gas binding to Au13, Au12Pd, and Au11Pd2 nanoclusters in the context of catalytic oxidation and reduction reactions. Journal of Chemical Physics, 2008, 129, 164712.	1.2	8
139	A study on the atomic hydrophobicity of peptides in aqueous solutions using molecular dynamics modeling methods. Proceedings of SPIE, 2008, , .	0.8	0
140	The Fate of Trace Elements During MTE and HTD Dewatering of Latrobe Valley Brown Coals. Coal Preparation, 2007, 27, 210-229.	0.5	13
141	Confinement effects on product selectivity in the pyrolysis of phenethyl phenyl ether in mesoporous silica. Chemical Communications, 2007, , 52-54.	2.2	20
142	Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals. Fuel, 2007, 86, 3-16.	3.4	105
143	Remediation of mechanical thermal expression product waters using raw Latrobe Valley brown coals as adsorbents. Fuel, 2007, 86, 1130-1138.	3.4	21
144	The effect of cation content of some raw and ion-exchanged Victorian lignites on their equilibrium moisture content and surface area. Fuel, 2007, 86, 2890-2897.	3.4	22

#	Article	IF	CITATIONS
145	CO2 capture by adsorption: Materials and process development. International Journal of Greenhouse Gas Control, 2007, 1, 11-18.	2.3	363
146	Diethylenetriamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2Adsorbents. Industrial & Engineering Chemistry Research, 2006, 45, 2626-2633.	1.8	233
147	Effects of Pretreatment in Steam on the Pyrolysis Behavior of Loy Yang Brown Coal. Energy & Fuels, 2006, 20, 281-286.	2.5	41
148	A comparison of primary lignite structure as determined by pyrolysis techniques with chemical characteristics determined by other methods. Fuel, 2006, 85, 998-1003.	3.4	12
149	Assessment of the water quality produced from mechanical thermal expression processing of three Latrobe Valley lignites. Fuel, 2006, 85, 1364-1370.	3.4	16
150	A comparison of adsorption isotherms using different techniques for a range of raw, water- and acid-washed lignites. Fuel, 2006, 85, 1559-1565.	3.4	23
151	Comparison of some physico–chemical properties of Victorian lignite dewatered under non-evaporative conditions. Fuel, 2006, 85, 1987-1991.	3.4	43
152	Lignite–water interactions studied by phase transition—differential scanning calorimetry. Fuel, 2005, 84, 1557-1557.	3.4	24
153	Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression. Fuel, 2005, 84, 1940-1948.	3.4	96
154	Molecular modeling of HMS hybrid materials for CO2 adsorption. Fuel Processing Technology, 2005, 86, 1473-1486.	3.7	32
155	Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Processing Technology, 2005, 86, 1435-1448.	3.7	311
156	THE INFLUENCE OF WATER QUALITY ON THE REUSE OF LIGNITE-DERIVED WATERS IN THE LATROBE VALLEY, AUSTRALIA. Coal Preparation, 2005, 25, 47-66.	0.5	10
157	Comparison of Physico-Chemical Properties of Various Lignites Treated by Mechanical Thermal Expression. Coal Preparation, 2005, 25, 269-293.	0.5	31
158	Dewatering Low Rank Coals by Mechanical Thermal Expression (MTE) and its Influence on Organic Carbon and Inorganic Removal. Coal Preparation, 2005, 25, 251-267.	0.5	33
159	Amine-functionalised mesoporous silicas as CO2 adsorbents. Studies in Surface Science and Catalysis, 2005, , 887-896.	1.5	27
160	Pyrolysis of Mesoporous Silica-Immobilized 1,3-Diphenylpropane. Impact of Pore Confinement and Size. Journal of the American Chemical Society, 2005, 127, 6353-6360.	6.6	48
161	Water in Brown Coal and Its Removal. , 2004, , 85-133.		35
162	Investigation of Lignin-water interactions by molecular simulation. Molecular Simulation, 2002, 28, 981-991.	0.9	49

#	Article	IF	CITATIONS
163	Reducing Greenhouse Emissions from Lignite Power Generation by Improving Current Drying Technologies. , 2002, , 175-187.		4
164	Understanding Brown Coal-Water Interactions to Reduce Carbon Dioxide Emissions. , 2002, , 203-216.		3
165	The transformation of kaolin to low-silica X zeolite. Zeolites, 1997, 19, 359-365.	0.9	133
166	The analysis of multiple O-phosphoseryl-containing peptides by fast atom bombardment mass spectrometry. International Journal of Peptide Research and Therapeutics, 1996, 2, 345-351.	0.1	2
167	Fast Atom Bombardment Mass Spectra of Some N-α-(t-Butoxycarbonyl)-O-(diorganylphosphono)-L-serines and O-(Diorganylphosphono)seryl-Containing Dipeptides and Tripeptides. Australian Journal of Chemistry, 1994, 47, 229.	0.5	3
168	Improved Methanol Decomposition Catalyst. Studies in Surface Science and Catalysis, 1994, 81, 405-407.	1.5	2
169	Air Separation For Off-Shore Gas Conversion. Studies in Surface Science and Catalysis, 1994, 81, 555-560.	1.5	0
170	Fischer-tropsch catalysts derived from surface confined [HnFeCo3(CO)12]nâ^'1 (n = 0, 1). Polyhedron, 1990, 9, 2815-2822.	1.0	6
171	Studies related to the structure and reactivity of coals. Fuel, 1990, 69, 764-770.	3.4	16
172	Comparison of the structure and reactivity of a Kansk-Achinsk basin (USSR) coal with those of a Latrobe Valley (Australia) coal. Energy & Fuels, 1990, 4, 28-33.	2.5	7
173	Molecular indicators of diagenesis in lignite diastereomeric configuration of triterpenoid derived aromatic hydrocarbons. Organic Geochemistry, 1990, 15, 485-488.	0.9	11
174	Studies related to the structure and reactivity of coals. Fuel, 1989, 68, 1538-1543.	3.4	19
175	Studies related to the structure and reactivity of coals. Fuel, 1989, 68, 1549-1557.	3.4	6
176	The conversion of brown coal to a dense, dry, hard material. Fuel Processing Technology, 1989, 21, 209-221.	3.7	20
177	Sulfur Poisoning of Fischer-Tropsch Synthesis Catalysts in a Fixed-Bed Reactor. Applied Catalysis, 1989, 47, 253-276.	1.1	27
178	A simple explanation for the [MH-90]+ ion in the fast atom bombardment mass spectrum of Nα-(t-butyloxycarbonyl)-O-(dibenzylphosphoro)-L-serine. Organic Mass Spectrometry, 1988, 23, 680-683.	1.3	6
179	Comparative electron impact, chemical ionization and fast atom bombardment mass spectra of Nα -(t-butyloxycarbonyl)-O-(di-t-butylphosphoro)-L-serine. Organic Mass Spectrometry, 1988, 23, 797-799. 	1.3	3
180	Polycyclic aromatic hydrocarbons in Australian coals—III. Structural elucidation by proton nuclear magnetic resonance spectroscopy. Organic Geochemistry, 1988, 12, 261-271.	0.9	70

#	Article	IF	CITATIONS
181	Detailed gas chromatography/mass spectrometric structural determination of olefin oligomerization products. Industrial & amp; Engineering Chemistry Research, 1987, 26, 1822-1824.	1.8	6
182	The koËlbel-engelhardt reaction over a silica supported nickel catalyst. Variation of product distributions with reaction conditions. Applied Catalysis, 1986, 26, 123-139.	1.1	7
183	Fast atom bombardment mass spectrometry of seryl- and O-phosphoseryl-containing peptides. Tetrahedron Letters, 1986, 27, 4791-4794.	0.7	8
184	Microreactor for postcolumn reaction gas chromatography/mass spectrometry with fused silica capillary columns. Analytical Chemistry, 1985, 57, 2429-2430.	3.2	9
185	Aromatic hydrocarbons from the kolbel-engelhardt reaction. Applied Catalysis, 1985, 19, 419-422.	1.1	4
186	Aliphatic components of Victorian brown coal lithotypes. Organic Geochemistry, 1985, 8, 349-365.	0.9	25
187	Polycyclic aromatic hydrocarbons in Australian coals II. Novel tetracyclic components from Victorian brown coal. Geochimica Et Cosmochimica Acta, 1984, 48, 2037-2043.	1.6	75
188	Pyrolysis—gas chromatography of Australian coals. 1. Victorian brown coal lithotypes. Fuel, 1983, 62, 303-310.	3.4	43
189	Pyrolysis—gas chromatography of Australian coals. 2. Bituminous coals. Fuel, 1983, 62, 311-316.	3.4	19
190	Polycyclic aromatic hydrocarbons in Australian coals. I. Angularly fused pentacyclic tri- and tetraaromatic components of Victorian brown coal. Geochimica Et Cosmochimica Acta, 1983, 47, 2141-2155.	1.6	124
191	Colouring matters of Australian plants. XXIV. Haemofluorone B : New synthetic models and a revised structure. Australian Journal of Chemistry, 1981, 34, 587.	0.5	10
192	Novel Adsorption Process Technologies for CO2 Post Combustion Capture Via Amine Type Adsorbents. SSRN Electronic Journal, 0, , .	0.4	1
193	Mesoporous Silica Supported Polyethyleneimine for CO2 Capture from Air. SSRN Electronic Journal, 0,	0.4	1
194	Highly Connected Framework Materials from Flexible Tetra-Isophthalate Ligands. CrystEngComm, 0, , .	1.3	3