
Brian B Hasinoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828877/publications.pdf Version: 2024-02-01

RDIAN R HASINGEE

#	Article	lF	CITATIONS
1	Mechanisms of Myocyte Cytotoxicity Induced by the Multiple Receptor Tyrosine Kinase Inhibitor Sunitinib. Molecular Pharmacology, 2008, 74, 1722-1728.	1.0	116
2	Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?. Cardiovascular Toxicology, 2007, 7, 140-144.	1.1	104
3	The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine, 2003, 35, 1469-1479.	1.3	102
4	A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 1995, 50, 953-958.	2.0	95
5	The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 2010, 249, 132-139.	1.3	89
6	The interaction of the cardioprotective agent ICRF-187 ((+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane); its hydrolysis product (ICRF-198); and other chelating agents with the Fe(III) and Cu(II) complexes of adriamycin. Agents and Actions, 1989, 26, 378-385.	0.7	85
7	Dexrazoxane (ICRF-187) Protects Cardiac Myocytes Against Doxorubicin by Preventing Damage to Mitochondria. Cardiovascular Toxicology, 2003, 3, 89-100.	1.1	81
8	Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy. Toxicology, 2009, 255, 72-79.	2.0	80
9	Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib. Cardiovascular Toxicology, 2017, 17, 237-250.	1.1	80
10	Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radical Biology and Medicine, 2002, 33, 266-275.	1.3	77
11	The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 2010, 244, 190-195.	1.3	77
12	The one-ring open hydrolysis product intermediates of the cardioprotective agent ICRF-187 (dexrazoxane) displace iron from iron-anthracycline complexes. Agents and Actions, 1993, 40, 86-95.	0.7	65
13	Comparison of the Structural Changes Induced by Doxorubicin and Mitoxantrone in the Heart, Kidney and Intestine and Characterization of the Fe(III)-mitoxantrone Complex. Journal of Molecular and Cellular Cardiology, 1997, 29, 2415-2430.	0.9	64
14	A Multifaceted Evaluation of Imatinib-induced Cardiotoxicity in the Rat. Toxicologic Pathology, 2011, 39, 1091-1106.	0.9	57
15	The Catalytic DNA Topoisomerase II Inhibitor Dexrazoxane (ICRF-187) Induces Differentiation and Apoptosis in Human Leukemia K562 Cells. Molecular Pharmacology, 2001, 59, 453-461.	1.0	55
16	Biochemical and Proteomics Approaches to Characterize Topoisomerase IIα Cysteines and DNA as Targets Responsible for Cisplatin-Induced Inhibition of Topoisomerase IIα. Molecular Pharmacology, 2005, 67, 937-947.	1.0	55
17	Mitindomide Is a Catalytic Inhibitor of DNA Topoisomerase II That Acts at the Bisdioxopiperazine Binding Site. Molecular Pharmacology, 1997, 52, 839-845.	1.0	52
18	Mechanisms of Action and Reduced Cardiotoxicity of Pixantrone; a Topoisomerase II Targeting Agent with Cellular Selectivity for the Topoisomerase IIÂ Isoform. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 397-409.	1.3	52

#	Article	IF	CITATIONS
19	Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). Journal of Inorganic Biochemistry, 2013, 126, 1-6.	1.5	50
20	The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). Journal of Inorganic Biochemistry, 2014, 137, 22-30.	1.5	50
21	The Metabolites of the Cardioprotective Drug Dexrazoxane Do Not Protect Myocytes from Doxorubicin-Induced Cytotoxicity. Molecular Pharmacology, 2003, 64, 670-678.	1.0	49
22	Kinamycins A and C, bacterial metabolites that contain an unusual diazo group, as potential new anticancer agents: antiproliferative and cell cycle effects. Anti-Cancer Drugs, 2006, 17, 825-837.	0.7	46
23	Total Synthesis of Isoprekinamycin:Â Structural Evidence for Enhanced Diazonium Ion Character and Growth Inhibitory Activity toward Cancer Cells. Organic Letters, 2007, 9, 2915-2918.	2.4	44
24	The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II. Biochemical Pharmacology, 2012, 84, 1617-1626.	2.0	44
25	Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochemical Pharmacology, 2015, 93, 266-276.	2.0	44
26	Collateral sensitivity to the bisdioxopiperazine dexrazoxane (ICRF-187) in etoposide (VP-16)-resistant human leukemia K562 cells. Biochemical Pharmacology, 1996, 52, 635-642.	2.0	42
27	The anticancer thiosemicarbazones Dp44mT and triapine lack inhibitory effects as catalytic inhibitors or poisons of DNA topoisomerase IIα. Biochemical Pharmacology, 2012, 84, 52-58.	2.0	42
28	Mechanism of the cytotoxicity of the diazoparaquinone antitumor antibiotic kinamycin F. Free Radical Biology and Medicine, 2007, 43, 1132-1144.	1.3	41
29	Mechanisms of Myocyte Cytotoxicity Induced by the Multikinase Inhibitor Sorafenib. Cardiovascular Toxicology, 2010, 10, 1-8.	1.1	41
30	Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 1997, 53, 1843-1853.	2.0	40
31	Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay. Free Radical Research, 2008, 42, 435-441.	1.5	40
32	Pharmacodynamics of the Hydrolysis-Activation of the Cardioprotective Agent (+)-1,2-Bis(3,5-dioxopiperazinyl-1-yl)propane. Journal of Pharmaceutical Sciences, 1994, 83, 64-67.	1.6	39
33	Adriamycin and its iron(III) and copper(II) complexes. Biochemical Pharmacology, 1988, 37, 3663-3669.	2.0	34
34	The effect of dexrazoxane (ICRF-187) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anti-Cancer Drugs, 1996, 7, 558-567.	0.7	34
35	Dexrazoxane (ICRF-187) Protects Cardiac Myocytes Against Hypoxia-Reoxygenation Damage. Cardiovascular Toxicology, 2002, 2, 111-118.	1.1	34
36	A diazirine-based photoaffinity etoposide probe for labeling topoisomerase II. Bioorganic and Medicinal Chemistry, 2010, 18, 830-838.	1.4	33

#	Article	IF	CITATIONS
37	Thiol-Modulated Mechanisms of the Cytotoxicity of Thimerosal and Inhibition of DNA Topoisomerase IIα. Chemical Research in Toxicology, 2008, 21, 483-493.	1.7	32
38	The doxorubicin-cardioprotective drug dexrazoxane undergoes metabolism in the rat to its metal ion-chelating form ADR-925. Cancer Chemotherapy and Pharmacology, 2002, 50, 509-513.	1.1	31
39	Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 2003, 52, 167-174.	1.1	31
40	The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opinion on Investigational Drugs, 2008, 17, 217-223.	1.9	31
41	The antitumor anthracyclines doxorubicin and daunorubicin do not inhibit cell growth through the formation of iron-mediated reactive oxygen species. Anti-Cancer Drugs, 2005, 16, 93-99.	0.7	29
42	An HPLC and spectrophotometric study of the hydrolysis of ICRF-187 (dexrazoxane,) Tj ETQq0 0 0 rgBT /Overlock Journal of Pharmaceutics, 1994, 107, 67-76.	10 Tf 50 5 2.6	547 Td ((+)-1 27
43	METABOLISM OF THE ONE-RING OPEN METABOLITES OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE TO ITS ACTIVE METAL-CHELATING FORM IN THE RAT. Drug Metabolism and Disposition, 2005, 33, 1367-1372.	1.7	26
44	Cadmium is a catalytic inhibitor of DNA topoisomerase II. Journal of Inorganic Biochemistry, 2011, 105, 833-838.	1.5	26
45	The Role of Topoisomerase IlÎ ² in the Mechanisms of Action of the Doxorubicin Cardioprotective Agent Dexrazoxane. Cardiovascular Toxicology, 2020, 20, 312-320.	1.1	26
46	Infection of myocytes with chlamydiae. Microbiology (United Kingdom), 2002, 148, 3955-3959.	0.7	26
47	Structure-activity study of the interaction of bioreductive benzoquinone alkylating agents with DNA topoisomerase II. Cancer Chemotherapy and Pharmacology, 2006, 57, 221-233.	1.1	25
48	The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 2007, 7, 19-27.	1.1	25
49	Brain Samples from Alzheimer's Patients Have Elevated Levels of Loosely Bound Iron. International Journal of Neuroscience, 1996, 86, 263-269.	0.8	24
50	Inhibition of anthracycline semiquinone formation by ICRF-187 (Dexrazoxane) in cells. Free Radical Biology and Medicine, 1996, 20, 905-914.	1.3	23
51	Mechanisms of beneficial effects of probucol in adriamycin cardiomyopathy. Molecular and Cellular Biochemistry, 1999, 196, 43-49.	1.4	23
52	Design, synthesis, and biological evaluation of a novel series of bisintercalating DNA-binding piperazine-linked bisanthrapyrazole compounds as anticancer agents. Bioorganic and Medicinal Chemistry, 2011, 19, 7023-7032.	1.4	23
53	Dihydroorotase Catalyzes the Ring Opening of the Hydrolysis Intermediates of the Cardioprotective Drug Dexrazoxane (ICRF-187). Drug Metabolism and Disposition, 2002, 30, 1431-1435.	1.7	22
54	Synthesis and characterization of the biological activity of the cisplatin analogs, cis-PtCl2(dexrazoxane) and cis-PtCl2(levrazoxane), of the topoisomerase II inhibitors dexrazoxane (ICRF-187) and levrazoxane (ICRF-186). Journal of Inorganic Biochemistry, 2004, 98, 616-624.	1.5	22

#	Article	IF	CITATIONS
55	A Structure-Based 3D-QSAR Study of Anthrapyrazole Analogues of the Anticancer Agents Losoxantrone and Piroxantrone. Journal of Chemical Information and Modeling, 2006, 46, 1827-1835.	2.5	21
56	A Three-Dimensional Quantitative Structure-Activity Analysis of a New Class of Bisphenol Topoisomerase IIα Inhibitors. Molecular Pharmacology, 2008, 73, 686-696.	1.0	21
57	The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin. Cardiovascular Toxicology, 2013, 13, 33-47.	1.1	21
58	Design, synthesis and biological evaluation of a novel series of anthrapyrazoles linked with netropsin-like oligopyrrole carboxamides as anticancer agents. Bioorganic and Medicinal Chemistry, 2010, 18, 3974-3984.	1.4	19
59	METABOLISM OF THE CARDIOPROTECTIVE DRUG DEXRAZOXANE AND ONE OF ITS METABOLITES BY ISOLATED RAT MYOCYTES, HEPATOCYTES, AND BLOOD. Drug Metabolism and Disposition, 2005, 33, 719-725.	1.7	18
60	A Three-Dimensional Quantitative Structure-Activity Relationship Study of the Inhibition of the ATPase Activity and the Strand Passing Catalytic Activity of Topoisomerase IIα by Substituted Purine Analogs. Molecular Pharmacology, 2006, 70, 1503-1513.	1.0	18
61	The iron chelator Dp44mT does not protect myocytes against doxorubicin. Journal of Inorganic Biochemistry, 2009, 103, 1093-1101.	1.5	18
62	Kinamycin F downregulates cyclin D3 in human leukemia K562 cells. Chemico-Biological Interactions, 2010, 184, 396-402.	1.7	18
63	Self-reduction of the iron(III)-doxorubicin complex. Free Radical Biology and Medicine, 1989, 7, 583-593.	1.3	17
64	The intracellular iron sensor calcein is catalytically oxidatively degraded by iron(II) in a hydrogen peroxide-dependent reaction. Journal of Inorganic Biochemistry, 2003, 95, 157-164.	1.5	17
65	The Myocyte-Damaging Effects of the BCR-ABL1-Targeted Tyrosine Kinase Inhibitors Increase with Potency and Decrease with Specificity. Cardiovascular Toxicology, 2017, 17, 297-306.	1.1	17
66	A QSAR study that compares the ability of bisdioxopiperazine analogs of the doxorubicin cardioprotective agent dexrazoxane (ICRF-187) to protect myocytes with DNA topoisomerase II inhibition. Toxicology and Applied Pharmacology, 2020, 399, 115038.	1.3	17
67	Oxyradical production results from the Fe3+–doxorubicin complex undergoing self-reduction by its α-ketol group. Biochemistry and Cell Biology, 1990, 68, 1331-1336.	0.9	16
68	Role of NADPH cytochrome P450 reductase in activation of RH1. Cancer Chemotherapy and Pharmacology, 2007, 60, 713-723.	1.1	16
69	Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin–N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA. Bioorganic and Medicinal Chemistry, 2014, 22, 5935-5949.	1.4	16
70	Dexrazoxane use in the prevention of anthracycline extravasation injury. Future Oncology, 2006, 2, 15-20.	1.1	15
71	The Dihydroorotase Inhibitor 5-Aminoorotic Acid Inhibits the Metabolism in the Rat of the Cardioprotective Drug Dexrazoxane and Its One-Ring Open Metabolites. Drug Metabolism and Disposition, 2008, 36, 1780-1785.	1.7	15
72	The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells. Free Radical Research, 2006, 40, 974-978.	1.5	14

#	Article	IF	CITATIONS
73	The structure-based design, synthesis and biological evaluation of DNA-binding bisintercalating bisanthrapyrazole anticancer compounds. Bioorganic and Medicinal Chemistry, 2008, 16, 3959-3968.	1.4	13
74	A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 2014, 36, 33-38.	0.2	13
75	Stereoselective metabolism of dexrazoxane (ICRF-187) and levrazoxane (ICRF-186). , 1999, 11, 286-290.		12
76	The cardioprotective and DNA topoisomerase II inhibitory agent dexrazoxane (ICRF-187) antagonizes camptothecin-mediated growth inhibition of Chinese hamster ovary cells by inhibition of DNA synthesis. Anti-Cancer Drugs, 1999, 10, 47-54.	0.7	12
77	Progress curve analysis of the kinetics of slow-binding anticancer drug inhibitors of the 20S proteasome. Archives of Biochemistry and Biophysics, 2018, 639, 52-58.	1.4	12
78	Prevention of doxorubicin-induced damage to rat heart myocytes by arginine analog nitric oxide synthase inhibitors and their enantiomers. Nitric Oxide - Biology and Chemistry, 2003, 9, 211-216.	1.2	11
79	The structure-based design, synthesis, and biological evaluation of DNA-binding amide linked bisintercalating bisanthrapyrazole anticancer compounds. Bioorganic and Medicinal Chemistry, 2009, 17, 4575-4582.	1.4	11
80	Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Archives of Biochemistry and Biophysics, 2017, 633, 23-28.	1.4	11
81	Myocyte-Damaging Effects and Binding Kinetics of Boronic Acid and Epoxyketone Proteasomal-Targeted Drugs. Cardiovascular Toxicology, 2018, 18, 557-568.	1.1	11
82	Nadph-Cytochrome-P450 Reductase Promotes Hydroxyl Radical Production by the Iron Complex of ADR-925, the Hydrolysis Product of ICRF-187 (Dexrazoxane). Free Radical Research, 1995, 22, 319-325.	1.5	10
83	Metal ion-promoted hydrolysis of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and its one-ring open hydrolysis products to its metal-chelating active form. Journal of Inorganic Biochemistry, 1997, 68, 101-108.	1.5	10
84	The iron chelating cardioprotective prodrug dexrazoxane does not affect the cell growth inhibitory effects of bleomycin. Journal of Inorganic Biochemistry, 2004, 98, 1818-1823.	1.5	10
85	Stereoselective hydrolysis of ICRF-187 (dexrazoxane) and ICRF-186 by dihydropyrimidine amidohydrolase. Chirality, 1994, 6, 213-215.	1.3	9
86	High-throughput fluorescence flow-injection topoisomerase II inhibition assay. Biomedical Applications, 2001, 760, 263-269.	1.7	9
87	Comparison of the chronic toxicity of piroxantrone, losoxantrone and doxorubicin in spontaneously hypertensive rats. Toxicology, 1998, 128, 35-52.	2.0	8
88	The one-ring open hydrolysis intermediates of the cardioprotective agent dexrazoxane (ICRF-187) do not inhibit the growth of Chinese hamster ovary cells or the catalytic activity of DNA topoisomerase II. Anti-Cancer Drugs, 1998, 9, 465-471.	0.7	8
89	Synthesis and Biological Activity of a Photoaffinity Etoposide Probe. Bioorganic and Medicinal Chemistry, 2001, 9, 1765-1771.	1.4	8
90	Prekinamycin and an isosteric-isoelectronic analogue exhibit comparable cytotoxicity towards K562 human leukemia cells. MedChemComm, 2014, 5, 1364-1370.	3.5	8

#	Article	IF	CITATIONS
91	Evaluation of Nitrobenzyl Derivatives of Camptothecin as Anti-Cancer Agents and Potential Hypoxia Targeting Prodrugs. Molecules, 2018, 23, 2041.	1.7	8
92	Chemical reactivity and microbicidal action of bethoxazin. Bioorganic and Medicinal Chemistry, 2012, 20, 1494-1501.	1.4	7
93	Mechanisms of the Cardiac Myocyte-Damaging Effects of Dasatinib. Cardiovascular Toxicology, 2020, 20, 380-389.	1.1	7
94	Pharmacokinetics of etoposide in cancer patients treated with high-dose etoposide and with dexrazoxane (ICRF-187) as a rescue agent. Cancer Chemotherapy and Pharmacology, 2004, 53, 91-93.	1.1	6
95	Structure-based design, synthesis and biological testing of piperazine-linked bis-epipodophyllotoxin etoposide analogs. Bioorganic and Medicinal Chemistry, 2015, 23, 3542-3551.	1.4	6
96	Chemical reactivity and biological activity of dihydro-1,4-dithiin tetraoxides. Canadian Journal of Chemistry, 2013, 91, 649-655.	0.6	5
97	The displacement of iron(III) from its complexes with the anticancer drugs piroxantrone and losoxantrone by the hydrolyzed form of the cardioprotective agent dexrazoxane. Journal of Inorganic Biochemistry, 1999, 77, 257-259.	1.5	3
98	The doxorubicin cardioprotective agent dexrazoxane (ICRF-187) induces endopolyploidy in rat neonatal myocytes through inhibition of DNA topoisomerase II. Anti-Cancer Drugs, 2002, 13, 255-258.	0.7	3
99	Ferrous sulfate does not reduce serum levels of famotidine or cimetidine after concurrent ingestion*. Clinical Pharmacology and Therapeutics, 1996, 59, 389-393.	2.3	2
100	The effect of the catalytic topoisomerase II inhibitor dexrazoxane (ICRF-187) on CC9C10 hybridoma viability and productivity. Cytotechnology, 2001, 37, 107-117.	0.7	2
101	Targeting oncofetal high mobility group A2 (HMGA2) to increase sensitivity to temozolomide (TMZ) in glioblastoma (GB) cells. Canadian Journal of Neurological Sciences, 2014, 41, S3-S4.	0.3	2
102	A quantitative structure?activity relationship study of the rate of imide hydrolysis as a predictive model for the hydrolysis-activation of analogs of the cardioprotective agent dexrazoxane. Journal of Molecular Modeling, 2001, 7, 438-444.	0.8	1
103	Ferrous sulphate does not directly affect pteroylmonoglutamic acid absorption in rats. British Journal of Nutrition, 1994, 72, 447-453.	1.2	0