
Jaesung Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828852/publications.pdf Version: 2024-02-01

INFSUNC PARK

#	Article	IF	CITATIONS
1	Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors. ACS Nano, 2013, 7, 7698-7710.	14.6	768
2	Microfluidic filtration system to isolate extracellular vesicles from blood. Lab on A Chip, 2012, 12, 5202.	6.0	325
3	Gram-negative and Gram-positive bacterial extracellular vesicles. Seminars in Cell and Developmental Biology, 2015, 40, 97-104.	5.0	307
4	Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab on A Chip, 2014, 14, 1261-1269.	6.0	116
5	Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomaterialia, 2018, 76, 146-153.	8.3	116
6	Demonstration of Low Power 3-bit Multilevel Cell Characteristics in a TaO _{<italic>x</italic>} -Based RRAM by Stack Engineering. IEEE Electron Device Letters, 2015, 36, 32-34.	3.9	112
7	High-yield isolation of extracellular vesicles using aqueous two-phase system. Scientific Reports, 2015, 5, 13103.	3.3	111
8	Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery. Biomaterials, 2015, 59, 12-20.	11.4	98
9	Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sensors and Actuators B: Chemical, 2016, 233, 289-297.	7.8	85
10	Bacterial Protoplast-Derived Nanovesicles as Vaccine Delivery System against Bacterial Infection. Nano Letters, 2015, 15, 266-274.	9.1	80
11	Prostate-specific extracellular vesicles as a novel biomarker in human prostate cancer. Scientific Reports, 2016, 6, 30386.	3.3	71
12	Nanovesicles engineered from ES cells for enhanced cell proliferation. Biomaterials, 2014, 35, 9302-9310.	11.4	68
13	Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system. Scientific Reports, 2015, 5, 11891.	3.3	58
14	Projection image-generation algorithm for fabrication of a complex structure using projection-based microstereolithography. International Journal of Precision Engineering and Manufacturing, 2012, 13, 445-449.	2.2	57
15	Methods to isolate extracellular vesicles for diagnosis. Micro and Nano Systems Letters, 2017, 5, .	3.7	54
16	Formation of liposomes using a 3D flow focusing microfluidic device with spatially patterned wettability by corona discharge. Journal of Micromechanics and Microengineering, 2012, 22, 055003.	2.6	53
17	Singleâ€vesicle imaging and coâ€localization analysis for tetraspanin profiling of individual extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12047.	12.2	52
18	Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosensors and Bioelectronics, 2021, 192, 113504.	10.1	50

JAESUNG PARK

#	Article	IF	CITATIONS
19	Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System. PLoS ONE, 2015, 10, e0129760.	2.5	45
20	Sepsis-Like Systemic Inflammation Induced by Nano-Sized Extracellular Vesicles From Feces. Frontiers in Microbiology, 2018, 9, 1735.	3.5	45
21	Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways. PLoS ONE, 2014, 9, e115170.	2.5	36
22	Thermal conductivity of single biological cells and relation with cell viability. Applied Physics Letters, 2013, 102, .	3.3	34
23	Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Scientific Reports, 2021, 11, 7355.	3.3	33
24	Selfâ€Renewal of Bone Marrow Stem Cells by Nanovesicles Engineered from Embryonic Stem Cells. Advanced Healthcare Materials, 2016, 5, 3148-3156.	7.6	28
25	Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM). AIP Advances, 2016, 6, .	1.3	25
26	Aqueous two-phase system to isolate extracellular vesicles from urine for prostate cancer diagnosis. PLoS ONE, 2018, 13, e0194818.	2.5	25
27	Analysis of Extracellular Vesicles Using Coffee Ring. ACS Applied Materials & Interfaces, 2018, 10, 22877-22882.	8.0	24
28	Multifluorescence Single Extracellular Vesicle Analysis by Time-Sequential Illumination and Tracking. ACS Nano, 2021, 15, 11753-11761.	14.6	24
29	Mesenchymal Stem Cell Engineered Nanovesicles for Accelerated Skin Wound Closure. ACS Biomaterials Science and Engineering, 2019, 5, 1534-1543.	5.2	23
30	Thermal conductivity of bovine serum albumin: A tool to probe denaturation of protein. Applied Physics Letters, 2011, 99, 163702.	3.3	20
31	Extracellular Vesicles Generated Using Bioreactors and their Therapeutic Effect on the Acute Kidney Injury Model. Advanced Healthcare Materials, 2022, 11, e2101606.	7.6	19
32	Effect of Concentrated Fibroblast-Conditioned Media on In Vitro Maintenance of Rat Primary Hepatocyte. PLoS ONE, 2016, 11, e0148846.	2.5	17
33	Development of a thermal sensor to probe cell viability and concentration in cell suspensions. AIP Advances, 2014, 4, .	1.3	14
34	Modulation of nanoparticle separation by initial contact angle in coffee ring effect. Micro and Nano Systems Letters, 2018, 6, .	3.7	13
35	Size-based analysis of extracellular vesicles using sequential transfer of an evaporating droplet. Lab on A Chip, 2019, 19, 3326-3336.	6.0	11
36	Defect Engineering Using Bilayer Structure in Filament-Type RRAM. IEEE Electron Device Letters, 2013, 34, 1250-1252.	3.9	10

JAESUNG PARK

#	Article	IF	CITATIONS
37	Cellâ€Engineered Nanovesicle as a Surrogate Inducer of Contactâ€Dependent Stimuli. Advanced Healthcare Materials, 2017, 6, 1700381.	7.6	9
38	BEOL compatible (300°C) TiN/TiO <inf>x</inf> /Ta/TiN 3D nanoscale (∼10nm) IMT selector. , 2013, , .		8
39	Heterogeneous Subcellular Origin of Exosome-Mimetic Nanovesicles Engineered from Cells. ACS Biomaterials Science and Engineering, 2020, 6, 6063-6068.	5.2	8
40	Evaluation of micro-RNA in extracellular vesicles from blood of patients with prostate cancer. PLoS ONE, 2021, 16, e0262017.	2.5	8
41	Optimized Lightning-Rod Effect to Overcome Trade-Off Between Switching Uniformity and On/Off Ratio in ReRAM. IEEE Electron Device Letters, 2014, 35, 214-216.	3.9	6
42	Immunostaining Extracellular Vesicles Based on an Aqueous Two-Phase System: For Analysis of Tetraspanins. ACS Applied Bio Materials, 2021, 4, 3294-3303.	4.6	5
43	High precision cell slicing by harmonically actuated ultra-sharp SixNyblades. Journal of Micromechanics and Microengineering, 2015, 25, 025007.	2.6	4
44	Outer Membrane Vesicles: In vivo Kinetic Biodistribution of Nano-Sized Outer Membrane Vesicles Derived from Bacteria (Small 4/2015). Small, 2015, 11, 386-386.	10.0	0