
Takahiro Iwamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828655/publications.pdf Version: 2024-02-01

TAKAHIPO WAMOTO

#	Article	IF	CITATIONS
1	A Novel Isothiourea Derivative Selectively Inhibits the Reverse Mode of Na+/Ca2+ Exchange in Cells Expressing NCX1. Journal of Biological Chemistry, 1996, 271, 22391-22397.	3.4	459
2	Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nature Medicine, 2004, 10, 1193-1199.	30.7	252
3	Targeted Disruption of Na+/Ca2+ Exchanger Gene Leads to Cardiomyocyte Apoptosis and Defects in Heartbeat. Journal of Biological Chemistry, 2000, 275, 36991-36998.	3.4	183
4	Differential inhibition of Na ⁺ /Ca ²⁺ exchanger isoforms by divalent cations and isothiourea derivative. American Journal of Physiology - Cell Physiology, 1998, 275, C423-C430.	4.6	150
5	Molecular Determinants of Na+/Ca2+ Exchange (NCX1) Inhibition by SEA0400. Journal of Biological Chemistry, 2004, 279, 7544-7553.	3.4	108
6	Protein Kinase C-Dependent Regulation of Na+/Ca2+Exchanger Isoforms NCX1 and NCX3 Does Not Require Their Direct Phosphorylationâ€. Biochemistry, 1998, 37, 17230-17238.	2.5	107
7	The Exchanger Inhibitory Peptide Region-Dependent Inhibition of Na+/Ca2+Exchange by SN-6 [2-[4-(4-Nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic Acid Ethyl Ester], a Novel Benzyloxyphenyl Derivative. Molecular Pharmacology, 2004, 66, 45-55.	2.3	103
8	Forefront of Na+/Ca2+ Exchanger Studies: Molecular Pharmacology of Na+/Ca2+ Exchange Inhibitors. Journal of Pharmacological Sciences, 2004, 96, 27-32.	2.5	97
9	Na+/Ca2+ Exchange Inhibitors: A New Class of Calcium Regulators. Cardiovascular & Hematological Disorders Drug Targets, 2007, 7, 188-198.	0.7	76
10	A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Scientific Reports, 2017, 7, 3855.	3.3	73
11	Attenuation of Ischemia/Reperfusion-Induced Renal Injury in Mice Deficient in Na+/Ca2+Exchanger. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 284-293.	2.5	59
12	YM-244769, a Novel Na+/Ca2+ Exchange Inhibitor That Preferentially Inhibits NCX3, Efficiently Protects against Hypoxia/Reoxygenation-Induced SH-SY5Y Neuronal Cell Damage. Molecular Pharmacology, 2006, 70, 2075-2083.	2.3	44
13	Development and application of Na ⁺ /Ca ²⁺ exchange inhibitors. Molecular and Cellular Biochemistry, 2004, 259, 157-161.	3.1	39
14	Na+/Ca2+ Exchange as a Drug Target-Insights from Molecular Pharmacology and Genetic Engineering. Annals of the New York Academy of Sciences, 2007, 1099, 516-528.	3.8	31
15	A novel and selective Na+/Ca2+ exchange inhibitor, SEA0400, improves ischemia/reperfusion-induced renal injury. European Journal of Pharmacology, 2003, 478, 187-198.	3.5	30
16	High sodium augments angiotensin II-induced vascular smooth muscle cell proliferation through the ERK 1/2-dependent pathway. Hypertension Research, 2014, 37, 13-18.	2.7	28
17	Vascular Na+/Ca2+ exchanger: implications for the pathogenesis and therapy of salt-dependent hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R536-R545.	1.8	27
18	Salt-Sensitive Hypertension, Na+/Ca2+ Exchanger, and Vascular Smooth Muscle. Trends in Cardiovascular Medicine, 2005, 15, 273-277.	4.9	25

ΤΑΚΑΗΙRO ΙWAMOTO

#	Article	IF	CITATIONS
19	Preferential involvement of Na+/Ca2+ exchanger type-1 in the brain damage caused by transient focal cerebral ischemia in mice. Biochemical and Biophysical Research Communications, 2012, 429, 186-190.	2.1	24
20	New Molecular Mechanisms for Cardiovascular Disease: Cardiac Hypertrophy and Cell-Volume Regulation. Journal of Pharmacological Sciences, 2011, 116, 343-349.	2.5	23
21	Reduced expression of Na+/Ca2+ exchangers is associated with cognitive deficits seen in Alzheimer's disease model mice. Neuropharmacology, 2018, 131, 291-303.	4.1	23
22	Sodium–calcium exchange inhibitors: therapeutic potential in cardiovascular diseases. Future Cardiology, 2005, 1, 519-529.	1.2	22
23	Genetic knockout and pharmacologic inhibition of NCX2 cause natriuresis and hypercalciuria. Biochemical and Biophysical Research Communications, 2015, 456, 670-675.	2.1	17
24	Na ⁺ /Ca ²⁺ exchanger mediates cold Ca ²⁺ signaling conserved for temperature-compensated circadian rhythms. Science Advances, 2021, 7, .	10.3	17
25	Topics on the Na+/Ca2+ Exchanger: Role of Vascular NCX1 in Salt-Dependent Hypertension. Journal of Pharmacological Sciences, 2006, 102, 32-36.	2.5	16
26	Na+/Ca2+ Exchanger 1/2 Double-Heterozygote Knockout Mice Display Increased Nitric Oxide Component and Altered Colonic Motility. Journal of Pharmacological Sciences, 2013, 123, 235-245.	2.5	13
27	Reduced CaM Kinase II and CaM Kinase IV Activities Underlie Cognitive Deficits in NCKX2 Heterozygous Mice. Molecular Neurobiology, 2017, 55, 3889-3900.	4.0	13
28	Na+/Ca2+ exchanger-deficient mice have disorganized myofibrils and swollen mitochondria in cardiomyocytes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 9-15.	1.6	11
29	Overexpression of Na+/Ca2+ exchanger 1 display enhanced relaxation in the gastric fundus. Journal of Pharmacological Sciences, 2016, 132, 181-186.	2.5	10
30	Roles of Na+/Ca2+ exchanger isoforms NCX1 and NCX2 in motility in mouse ileum. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 1081-1090.	3.0	10
31	Conditional knockout of smooth muscle sodium calcium exchanger type-1 lowers blood pressure and attenuates Angiotensin II-salt hypertension. Physiological Reports, 2015, 3, e12273.	1.7	8
32	Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes. Pflugers Archiv European Journal of Physiology, 2016, 468, 693-703.	2.8	8
33	Sodium–calcium exchanger 1 is the key molecule for urinary potassium excretion against acute hyperkalemia. PLoS ONE, 2020, 15, e0235360.	2.5	6
34	Inhibitory effect of YM-244769, a novel Na+/Ca2+ exchanger inhibitor on Na+/Ca2+ exchange current in guinea pig cardiac ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 1205-1214.	3.0	5
35	Endogenous Hydrogen Sulfide Contributes to Tone Generation in Porcine Lower Esophageal Sphincter Via Na+/Ca2+ Exchanger. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 209-221.	4.5	5
36	Na ⁺ /Ca ²⁺ exchanger contributes to stool transport in mice with experimental diarrhea. Journal of Veterinary Medical Science, 2017, 79, 403-411.	0.9	5

ΤΑΚΑΗΙRO ΙWAMOTO

#	Article	IF	CITATIONS
37	Acceptance of Murine Islet Allografts Without Immunosuppression in Inguinal Subcutaneous White Adipose Tissue Pretreated With bFGF. Diabetes, 2022, 71, 1721-1734.	0.6	4
38	Endothelin-1 Aggravates Hypoxia/Reoxygenationinduced Injury in Renal Epithelial Cells through the Activation of a Na+/Ca2+ Exchanger. Journal of Cardiovascular Pharmacology, 2004, 44, S462-S466.	1.9	3
39	Effects of Krill-derived phospholipid-enriched n â^' 3 fatty acids on Ca2+ regulation system in cerebral arteries from ovariectomized rats. Life Sciences, 2014, 100, 18-24.	4.3	3
40	Aberrant Amygdala-Dependent Cued Fear Memory in Na+/Ca2+ Exchanger 1 Heterozygous Mice. Molecular Neurobiology, 2019, 56, 4381-4394.	4.0	1
41	Genetic knockout and pharmacologic inhibition of NCX1 attenuate hypoxia-induced pulmonary arterial hypertension. Biochemical and Biophysical Research Communications, 2020, 529, 793-798.	2.1	1
42	Lymphangiogenesis and angiogenesis rescue murine ischemic hindlimb via transient receptor potential vanilloid 4. Journal of Pharmacological Sciences, 2021, 146, 244-248.	2.5	1
43	New Molecular Mechanisms for Cardiovascular Disease: Preface. Journal of Pharmacological Sciences, 2011, 116, 321-322.	2.5	Ο
44	1. Na⁺/Ca²⁺ Exchangers: Therapeutic Target for Cardiovascular Diseases . Japanese Journal of Clinical Pharmacology and Therapeutics, 2015, 46, 30-32.	0.1	0
45	Preface . Japanese Journal of Clinical Pharmacology and Therapeutics, 2015, 46, 29-29.	0.1	Ο
46	Conditional knockout of smooth muscleâ€specific Na/Ca exchanger typeâ€1 causes striking impairment of NO/cGMPâ€mediated vasodilation. FASEB Journal, 2015, 29, 1052.6.	0.5	0
47	Functional analysis of vascular Na ⁺ /Ca ²⁺ exchangers using genetically engineered mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-2-41.	0.0	Ο
48	Therapeutic efficacy of TNF-a neutralizing antibody in Complex Regional Pain Syndrome (CRPS) model mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-2-9.	0.0	0
49	Vascular smooth muscle NCX1 is involved in the pathogenesis of pulmonary arterial hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-3-37.	0.0	Ο
50	Title is missing!. , 2020, 15, e0235360.		0
51	Title is missing!. , 2020, 15, e0235360.		0
52	Title is missing!. , 2020, 15, e0235360.		0
53	Title is missing!. , 2020, 15, e0235360.		Ο