Chao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conserved mechanism for vacuolar magnesium sequestration in yeast and plant cells. Nature Plants, 2022, 8, 181-190.	9.3	16
2	Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Current Genomics, 2021, 22, 164-180.	1.6	11
3	Discriminating symbiosis and immunity signals by receptor competition in rice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	59
4	Suppression of LjBAK1-mediated immunity by SymRK promotes rhizobial infection in Lotus japonicus. Molecular Plant, 2021, 14, 1935-1950.	8.3	22
5	Calcium Signaling Mechanisms Across Kingdoms. Annual Review of Cell and Developmental Biology, 2021, 37, 311-340.	9.4	98
6	Plant Membrane Transport Research inÂtheÂPost-genomic Era. Plant Communications, 2020, 1, 100013.	7.7	26
7	Transcriptional regulation of <i>NIN</i> expression by IPN2 is required for root nodule symbiosis in <i>Lotus japonicus</i> . New Phytologist, 2020, 227, 513-528.	7.3	17
8	The CBL–CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. Trends in Plant Science, 2020, 25, 604-617.	8.8	181
9	A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments. Nature Plants, 2020, 6, 384-393.	9.3	76
10	Calcium spikes, waves and oscillations in plant development and biotic interactions. Nature Plants, 2020, 6, 750-759.	9.3	188
11	A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 2019, 572, 131-135.	27.8	320
12	Suppression of innate immunity mediated by the CDPKâ€Rboh complex is required for rhizobial colonization in <i>Medicago truncatula</i> nodules. New Phytologist, 2018, 220, 425-434.	7.3	53
13	OsCERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. Molecular Plant, 2017, 10, 619-633.	8.3	135
14	<i>Streptomyces virginiae</i> PPDC Is a New Type of Phenylpyruvate Decarboxylase Composed of Two Subunits. ACS Chemical Biology, 2017, 12, 2008-2014.	3.4	2
15	<i>NODULES WITH ACTIVATED DEFENSE 1</i> is required for maintenance of rhizobial endosymbiosis in <i>Medicago truncatula</i> . New Phytologist, 2016, 212, 176-191.	7.3	90
16	Arabidopsis Farms Colletotrichum tofieldiae for Phosphate Uptake. Molecular Plant, 2016, 9, 953-955.	8.3	1
17	DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016, 7, 12433.	12.8	198
18	Phytosulfokine Is Involved in Positive Regulation of <i>Lotus japonicus</i> Nodulation. Molecular Plant-Microbe Interactions, 2015, 28, 847-855.	2.6	28

CHAO WANG

#	Article	IF	CITATIONS
19	<i>Lotus japonicus</i> Clathrin Heavy Chain1 Is Associated with Rho-Like GTPase ROP6 and Involved in Nodule Formation. Plant Physiology, 2015, 167, 1497-1510.	4.8	45
20	Involvement of ROP6 and clathrin in nodulation factor signaling. Plant Signaling and Behavior, 2015, 10, e1033127.	2.4	6
21	A <scp>MYB</scp> coiledâ€coil transcription factor interacts with <scp>NSP</scp> 2 and is involved in nodulation in <i><scp>L</scp>otus japonicus</i> . New Phytologist, 2014, 201, 837-849.	7.3	26
22	Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus. Plant Molecular Biology, 2013, 82, 97-111.	3.9	36
23	Clathrin Light Chains Regulate Clathrin-Mediated Trafficking, Auxin Signaling, and Development in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2013, 25, 499-516.	6.6	152
24	A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in <i>Lotus japonicus</i> . Plant Cell, 2012, 24, 823-838.	6.6	99
25	A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in <i>Lotus japonicus</i> Â Â Â Â. Plant Physiology, 2011, 155, 1312-1324.	4.8	44