
Paola Petrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828488/publications.pdf Version: 2024-02-01

DACIA DETRINI

#	Article	IF	CITATIONS
1	Advances in biomedical applications of pectin gels. International Journal of Biological Macromolecules, 2012, 51, 681-689.	3.6	433
2	Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577.	2.6	213
3	Chemical stability of polyether urethanes versus polycarbonate urethanes. , 1997, 36, 550-559.		139
4	Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydrate Polymers, 2014, 103, 339-347.	5.1	135
5	Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials, 2003, 24, 789-799.	5.7	133
6	Antibacterial Activity of Zinc Modified Titanium Oxide Surface. International Journal of Artificial Organs, 2006, 29, 434-442.	0.7	101
7	Biofunctional chemically modified pectin for cell delivery. Soft Matter, 2012, 8, 4731.	1.2	74
8	Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 2096-2108.	2.9	74
9	Design, synthesis and properties of polyurethane hydrogels for tissue engineering. Journal of Materials Science: Materials in Medicine, 2003, 14, 683-686.	1.7	67
10	Silk Fibroin-Coated Three-Dimensional Polyurethane Scaffolds for Tissue Engineering: Interactions with Normal Human Fibroblasts. Tissue Engineering, 2003, 9, 1113-1121.	4.9	61
11	Silk fibroin-polyurethane scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2001, 12, 849-853.	1.7	57
12	Polysaccharides derived from tragacanth as biocompatible polymers and Gels. Journal of Applied Polymer Science, 2013, 129, 2092-2102.	1.3	54
13	Synergistic effects of oxidative environments and mechanical stress onin vitro stability of polyetherurethanes and polycarbonateurethanes. Journal of Biomedical Materials Research Part B, 1999, 45, 62-74.	3.0	53
14	In Vitro Stability of Polyether and Polycarbonate Urethanes. Journal of Biomaterials Applications, 2000, 14, 325-348.	1.2	49
15	In vitrointeraction of human fibroblasts and platelets with a shape-memory polyurethane. Journal of Biomedical Materials Research - Part A, 2005, 73A, 1-11.	2.1	46
16	Pain assessment in animal models: do we need further studies?. Journal of Pain Research, 2014, 7, 227.	0.8	45
17	Sterilization treatments on polysaccharides: Effects and side effects on pectin. Food Hydrocolloids, 2013, 31, 74-84.	5.6	42
18	Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. International Journal of Biological Macromolecules, 2015, 72, 199-209.	3.6	41

PAOLA PETRINI

#	Article	IF	CITATIONS
19	Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 365-375.	1.7	39
20	Poly(ethylene glycol) and Hydroxy Functionalized Alkane Phosphate Mixed Self-Assembled Monolayers to Control Nonspecific Adsorption of Proteins on Titanium Oxide Surfaces. Langmuir, 2010, 26, 6529-6534.	1.6	36
21	New Perspectives in Cell Delivery Systems for Tissue Regeneration: Natural-derived Injectable Hydrogels. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 67-81.	0.7	32
22	Pectins from <i>Aloe Vera</i> : Extraction and production of gels for regenerative medicine. Journal of Applied Polymer Science, 2014, 131, .	1.3	32
23	Towards bioinspired <i>in vitro</i> models of intestinal mucus. RSC Advances, 2019, 9, 15887-15899.	1.7	32
24	In vitro Stability of Polyether and Polycarbonate Urethanes. Journal of Biomaterials Applications, 2000, 14, 325-348.	1.2	32
25	Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 2641-2650.	1.7	28
26	Reactive hydroxyapatite fillers for pectin biocomposites. Materials Science and Engineering C, 2014, 45, 154-161.	3.8	27
27	Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery. Journal of Materials Chemistry B, 2019, 7, 4940-4952.	2.9	27
28	Encapsulated functionalized stereocomplex PLA particles: An effective system to support mucolytic enzymes. Colloids and Surfaces B: Biointerfaces, 2019, 179, 190-198.	2.5	26
29	Mineral phase deposition on pectin microspheres. Materials Science and Engineering C, 2010, 30, 491-496.	3.8	24
30	Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World. Applied Sciences (Switzerland), 2018, 8, 845.	1.3	22
31	Linear poly(ethylene oxide)-based polyurethane hydrogels: polyurethane-ureas and polyurethane-amides. Journal of Materials Science: Materials in Medicine, 1999, 10, 635-639.	1.7	21
32	External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology. Journal of Physics Condensed Matter, 2014, 26, 464106.	0.7	20
33	Technological tools and strategies for culturing human gut microbiota in engineered in vitro models. Biotechnology and Bioengineering, 2021, 118, 2886-2905.	1.7	20
34	From micro- to nanostructured implantable device for local anesthetic delivery. International Journal of Nanomedicine, 2016, 11, 2695.	3.3	19
35	Engineering biological gradients. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001982902.	0.7	19
36	From tissue engineering to engineering tissues: the role and application of <i>in vitro</i> models. Biomaterials Science, 2021, 9, 70-83.	2.6	19

PAOLA PETRINI

#	Article	IF	CITATIONS
37	Nanostructured polysaccharidic microcapsules for intracellular release of cisplatin. International Journal of Biological Macromolecules, 2017, 99, 187-195.	3.6	18
38	Mucin binding to therapeutic molecules: The case of antimicrobial agents used in cystic fibrosis. International Journal of Pharmaceutics, 2019, 564, 136-144.	2.6	18
39	3D-Reactive printing of engineered alginate inks. Soft Matter, 2021, 17, 8105-8117.	1.2	17
40	In Vitro Interactions of Biomedical Polyurethanes with Macrophages and Bacterial Cells. Journal of Biomaterials Applications, 2002, 16, 191-214.	1.2	15
41	Fabrication and Characterization of Chitosan and Pectin Nanostructured Multilayers. Macromolecular Chemistry and Physics, 2015, 216, 1067-1075.	1.1	14
42	Stereocomplex poly(lactic acid) nanocoated chitosan microparticles for the sustained release of hydrophilic drugs. Materials Science and Engineering C, 2017, 76, 1129-1135.	3.8	14
43	Cystic Fibrosis Mucus Model to Design More Efficient Drug Therapies. Molecular Pharmaceutics, 2022, 19, 520-531.	2.3	14
44	Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems. International Journal of Artificial Organs, 2018, 41, 213-222.	0.7	13
45	Trends in biomedical engineering: focus on Regenerative Medicine. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 73-86.	0.4	11
46	Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release. Journal of Materials Science: Materials in Medicine, 2015, 26, 5328.	1.7	11
47	Hydrothermal synthesis of pectin derived nanoporous carbon material. Materials Letters, 2016, 171, 212-215.	1.3	11
48	Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 87-97.	0.4	9
49	Immunological and Differentiation Properties of Amniotic Cells Are Retained After Immobilization in Pectin Gel. Cell Transplantation, 2018, 27, 70-76.	1.2	9
50	Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multiâ€Đrug Delivery Platform. Advanced Healthcare Materials, 2022, 11, .	3.9	9
51	Novel Poly(urethane-aminoamides): an in vitro study of the interaction with heparin. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 353-365.	1.9	8
52	Poly(Ethylene Glycol) and Hydroxy Functionalized Alkane Phosphate Self-Assembled Monolayers Reduce Bacterial Adhesion and Support Osteoblast Proliferation. International Journal of Artificial Organs, 2011, 34, 898-907.	0.7	8
53	Shear-resistant hydrogels to control permeability of porous tubular scaffolds in vascular tissue engineering. Materials Science and Engineering C, 2019, 105, 110035.	3.8	8
54	Polyurethane-maleamides for cardiovascular applications: synthesis and properties. Journal of Materials Science: Materials in Medicine, 1999, 10, 711-714.	1.7	5

PAOLA PETRINI

#	Article	IF	CITATIONS
55	The Open Challenge of in vitro Modeling Complex and Multi-Microbial Communities in Three-Dimensional Niches. Frontiers in Bioengineering and Biotechnology, 2020, 8, 539319.	2.0	5
56	Engineered modular microphysiological models of the human airway clearance phenomena. Biotechnology and Bioengineering, 2021, 118, 3898-3913.	1.7	5
57	Design of Multifunctional Polysaccharides for Biomedical Applications: A Critical Review. Current Organic Chemistry, 2018, 22, 1222-1236.	0.9	4
58	Bioinspired in vitro intestinal mucus model for 3D-dynamic culture of bacteria. , 2022, 139, 213022.		4
59	Correction: Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 8422-8422.	2.9	3
60	Microbiological-Chemical Sourced Chondroitin Sulfates Protect Neuroblastoma SH-SY5Y Cells against Oxidative Stress and Are Suitable for Hydrogel-Based Controlled Release. Antioxidants, 2021, 10, 1816.	2.2	3
61	Silk fibroin-polyurethane scaffolds for tissue engineering. , 0, , .		1
62	3D polyurethane/Î \pm -TCP composite scaffolds for bone tissue engineering. , 0, , .		1
63	Protein Immobilization onto Newly Developed Polyurethane-Maleamides for Endothelial Cell Growth. , 2002, , 235-242.		0
64	Hydrogel-based platforms to mimic in vivo drug diffusion: A multicenter research. Biomedical Science and Engineering, 2020, 3, .	0.0	0
65	Drug-induced hepatotoxicity studied in a 3D, in vitro model of the liver. Biomedical Science and Engineering, 2021, 4, .	0.0	0
66	Fabrication of chemically cross-linked porous gelatin matrices. Journal of Applied Biomaterials and Biomechanics, 2009, 7, 194-9.	0.4	0