Vladimir V Vinogradov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4828462/publications.pdf

Version: 2024-02-01

111 papers 2,409 citations

236925 25 h-index 254184 43 g-index

117 all docs

117 docs citations

times ranked

117

3290 citing authors

#	Article	IF	CITATIONS
1	Hierarchical Porous Magnetite Structures: From Nanoparticle Assembly to Monolithic Aerogels. Journal of Colloid and Interface Science, 2022, 615, 206-214.	9.4	2
2	DiZyme: Openâ€Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity. Small, 2022, 18, e2105673.	10.0	21
3	Inverse Material Search and Synthesis Verification by Hand Drawings via Transfer Learning and Contour Detection. Small Methods, 2022, , 2101619.	8.6	1
4	Artificial intelligence to bring nanomedicine to life. Advanced Drug Delivery Reviews, 2022, 184, 114194.	13.7	39
5	Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 23896-23908.	8.0	11
6	Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology, 2021, 15, 167-204.	3.0	45
7	Shape anisotropic magnetic thrombolytic actuators: synthesis and systematic behavior study. Journal of Materials Chemistry B, 2021, 9, 4941-4955.	5.8	6
8	Facile Synthesis of a Library of Hollow Metallic Particles through the Galvanic Replacement of Liquid Gallium. Chemistry of Materials, 2021, 33, 1571-1580.	6.7	27
9	Magnetically Controlled Carbonate Nanocomposite with Ciprofloxacin for Biofilm Eradication. International Journal of Molecular Sciences, 2021, 22, 6187.	4.1	9
10	Single Particle Color Switching by Laser-Induced Deformation of Liquid Metal-derived Microcapsules. Journal of Physical Chemistry Letters, 2021, 12, 7738-7744.	4.6	8
11	Large MOFs: synthesis strategies and applications where size matters. Journal of Materials Chemistry A, 2021, 9, 25258-25271.	10.3	20
12	Bioinspired <i>In Vitro</i> Brain Vasculature Model for Nanomedicine Testing Based on Decellularized Spinach Leaves. Nano Letters, 2021, 21, 9853-9861.	9.1	6
13	Room-temperature fabrication of magnetite-boehmite sol-gel composites for heavy metal ions removal. Arabian Journal of Chemistry, 2020, 13, 1933-1944.	4.9	25
14	Magnetic Field-Mediated Control of Whole-Cell Biocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 8989-8996.	4.6	7
15	Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications. Journal of Materials Chemistry B, 2020, 8, 10010-10022.	5.8	21
16	One-pot synthesis of template-free hollow anisotropic CaCO ₃ structures: towards inorganic shape-mimicking drug delivery systems. Chemical Communications, 2020, 56, 11969-11972.	4.1	14
17	Nanoparticle-Based Approaches towards the Treatment of Atherosclerosis. Pharmaceutics, 2020, 12, 1056.	4.5	24
18	Cationic Magnetite Nanoparticles for Increasing siRNA Hybridization Rates. Nanomaterials, 2020, 10, 1018.	4.1	5

#	Article	IF	CITATIONS
19	Magnetic polyelectrolyte-based composites with dual anticoagulant and thrombolytic properties: towards optimal composition. Journal of Sol-Gel Science and Technology, 2020, 95, 771-782.	2.4	7
20	Test-System for Bacteria Sensing Based on Peroxidase-Like Activity of Inkjet-Printed Magnetite Nanoparticles. Nanomaterials, 2020, 10, 313.	4.1	11
21	Alumina Nanoparticles for Firefighting and Fire Prevention. ACS Applied Nano Materials, 2020, 3, 4386-4393.	5.0	20
22	Effects of Metal Oxide Nanoparticles on Toll-Like Receptor mRNAs in Human Monocytes. Nanomaterials, 2020, 10, 127.	4.1	22
23	<p>Magnetically controlled protein nanocontainers as a drug depot for the hemostatic agent</p> . Nanotechnology, Science and Applications, 2019, Volume 12, 11-23.	4.6	8
24	Sol-gel composites based on alumina and ferria for cardiovascular diseases treatment., 2019,, 149-179.		0
25	Synthesis of Plasminâ€Loaded Fe 3 O 4 @CaCO 3 Nanoparticles: Towards Nextâ€Generation Thrombolytic Drugs. ChemNanoMat, 2019, 5, 1267-1271.	2.8	11
26	Biocide-conjugated magnetite nanoparticles as an advanced platform for biofilm treatment. Therapeutic Delivery, 2019, 10, 241-250.	2.2	13
27	Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. Journal of Drug Delivery Science and Technology, 2019, 54, 101282.	3.0	29
28	Toxicity Patterns of Clinically Relevant Metal Oxide Nanoparticles. ACS Applied Bio Materials, 2019, 2, 4427-4435.	4.6	21
29	Application of Immobilized Enzymes in Food Industry. Journal of Agricultural and Food Chemistry, 2019, 67, 11553-11567.	5.2	114
30	Upconversion metal (Zr, Hf, and Ta) oxide aerogels. Chemical Communications, 2019, 55, 8174-8177.	4.1	11
31	Optical interference-based sensors for the visual detection of nano-scale objects. Nanoscale, 2019, 11, 6343-6351.	5.6	2
32	Sol-gel derived boehmite nanostructures is a versatile nanoplatform for biomedical applications. Scientific Reports, 2019, 9, 1176.	3.3	25
33	Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials, 2019, 9, 1631.	4.1	50
34	Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. Journal of Materials Chemistry B, 2018, 6, 2450-2459.	5.8	34
35	Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Scientific Reports, 2018, 8, 233.	3.3	56
36	Holographic sol–gel monoliths: optical properties and application for humidity sensing. Royal Society Open Science, 2018, 5, 172465.	2.4	4

#	Article	IF	Citations
37	Metalâ€Dielectric Nanocavity for Realâ€Time Tracing Molecular Events with Temperature Feedback. Laser and Photonics Reviews, 2018, 12, 1700227.	8.7	45
38	Stimuli-Responsive Mechanoluminescence in Different Matrices. ACS Omega, 2018, 3, 18803-18810.	3.5	11
39	Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS Applied Materials & Eval	8.0	82
40	Enzymatic Nanocomposites with Radio Frequency Field-Modulated Activity. ACS Biomaterials Science and Engineering, 2018, 4, 3962-3967.	5.2	18
41	α-Amylase@Ferria: Magnetic Nanocomposites with Enhanced Thermal Stability for Starch Hydrolysis. Journal of Agricultural and Food Chemistry, 2018, 66, 8054-8060.	5.2	9
42	Magnetite Nanocontainers: Toward Injectable Highly Magnetic Materials for Targeted Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Applied Materials & Drug Delivery.	8.0	20
43	Synthesis of a rare-earth doped hafnia hydrosol: Towards injectable luminescent nanocolloids. Colloids and Surfaces B: Biointerfaces, 2017, 154, 21-26.	5.0	17
44	Alumina nanoparticle-assisted enzyme refolding: A versatile methodology for proteins renaturation. Scientific Reports, 2017, 7, 1458.	3.3	10
45	Inkjet printing of the chromogen free oxidase based optical biosensors. Sensors and Actuators B: Chemical, 2017, 251, 746-752.	7.8	13
46	A pure magnetite hydrogel: synthesis, properties and possible applications. Soft Matter, 2017, 13, 8651-8660.	2.7	32
47	The controllable destabilization route for synthesis of low cytotoxic magnetic nanospheres with photonic response. Scientific Reports, 2017, 7, 11343.	3.3	17
48	Magnetic thrombolytic ceramic nanoparticles. Materials Today: Proceedings, 2017, 4, 6856-6862.	1.8	3
49	Inkjet fabrication of highly efficient luminescent Eu-doped ZrO ₂ nanostructures. Nanoscale, 2017, 9, 13069-13078.	5.6	16
50	Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Scientific Reports, 2017, 7, 15448.	3.3	75
51	Reversible sol–gel–sol medium for enzymatic optical biosensors. Journal of Materials Chemistry B, 2017, 5, 85-91.	5.8	15
52	Multifunctional sensing with hybrid nanophotonic structures. , 2017, , .		0
53	Protection of enzymes from photodegradation by entrapment within alumina. Colloids and Surfaces B: Biointerfaces, 2016, 146, 731-736.	5.0	14
54	Nanoparticle Self-Assembly Mechanisms in the Colloidal Synthesis of Iron Titanate Nanocomposite Photocatalysts for Environmental Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2814-2821.	6.7	32

#	Article	IF	Citations
55	Streptokinase@alumina nanoparticles as a promising thrombolytic colloid with prolonged action. Journal of Materials Chemistry B, 2016, 4, 5921-5928.	5.8	28
56	Collagenase@magnetite: proteolytic composite for magnetically targeted minimally invasive surgery. RSC Advances, 2016, 6, 84354-84362.	3.6	15
57	Inkjet printing of TiO2/AlOOH heterostructures for the formation of interference color images with high optical visibility. Scientific Reports, 2016, 6, 37090.	3.3	15
58	Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity. Scientific Reports, 2016, 6, 28119.	3.3	33
59	Metal–organic frameworks as competitive materials for non-linear optics. Chemical Society Reviews, 2016, 45, 5408-5431.	38.1	225
60	Inkjet Color Printing by Interference Nanostructures. ACS Nano, 2016, 10, 3078-3086.	14.6	82
61	A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH. Journal of Colloid and Interface Science, 2016, 468, 307-312.	9.4	70
62	Entrapment of Enzymes within Sol–Gel-Derived Magnetite. Chemistry of Materials, 2016, 28, 2248-2253.	6.7	34
63	Silica Foams for Fire Prevention and Firefighting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 294-301.	8.0	71
64	Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase. Scientific Reports, 2015, 5, 14411.	3.3	9
65	Sol–Gel Assisted Inkjet Hologram Patterning. Advanced Functional Materials, 2015, 25, 7375-7380.	14.9	33
66	Exceptional thermal stability of industrially-important enzymes by entrapment within nano-boehmite derived alumina. RSC Advances, 2015, 5, 10862-10868.	3.6	25
67	Plasminogen activator entrapped within injectable alumina: a novel approach to thrombolysis treatment. Journal of Sol-Gel Science and Technology, 2015, 73, 501-505.	2.4	13
68	Zirconium(IV) and hafnium(IV) coordination polymers with a tetra-acetyl-ethane (Bisacac) ligand: Synthesis, structure elucidation and gas sorption behavior. Polyhedron, 2015, 89, 297-303.	2.2	6
69	Magneto-Optical Modulation on Colloid Cu–Ni Nanocomposite. Journal of Physical Chemistry C, 2015, 119, 1500-1505.	3.1	5
70	Synthesis of Thrombolytic Sol–Gel Coatings: Toward Drug-Entrapped Vascular Grafts. Journal of Medicinal Chemistry, 2015, 58, 6313-6317.	6.4	9
71	Biocomposites for wound-healing based on sol–gel magnetite. RSC Advances, 2015, 5, 82992-82997.	3.6	21
72	Anomalous adsorption of biomolecules on a Zn-based metal–organic framework obtained via a facile room-temperature route. Chemical Communications, 2015, 51, 17764-17767.	4.1	21

#	Article	IF	CITATIONS
73	Conductive magnetic sol–gel films. Journal of Materials Chemistry C, 2015, 3, 10723-10727.	5.5	2
74	Effect of Acidic Peptization on Formation of Highly Photoactive <scp><scp>TiO</scp> Films Prepared without Heat Treatment. Journal of the American Ceramic Society, 2014, 97, 290-294.</scp>	3.8	20
75	Preparation and physicochemical properties of Nicotinamide@AlOOH biocompatible composite based on sol-gel materials. Nanotechnologies in Russia, 2014, 9, 87-92.	0.7	1
76	Low-temperature approach to forming high-porous Fe(III)-TiO2 nanoparticles possessing high photoactivity. Nanotechnologies in Russia, 2014, 9, 15-20.	0.7	5
77	Conductive sol–gel films. Journal of Materials Chemistry C, 2014, 2, 3914.	5.5	13
78	The first depleted heterojunction TiO ₂ –MOF-based solar cell. Chemical Communications, 2014, 50, 10210-10213.	4.1	112
79	A synergistic biocomposite for wound healing and decreasing scar size based on sol–gel alumina. RSC Advances, 2014, 4, 60445-60450.	3.6	12
80	A facile sol–gel synthesis of impurity-free nanocrystalline titania. Physical Chemistry Chemical Physics, 2014, 16, 10614-10619.	2.8	6
81	Exceptional thermal stability of therapeutical enzymes entrapped in alumina sol–gel matrices. Journal of Materials Chemistry B, 2014, 2, 2868.	5.8	43
82	Low-temperature sol–gel synthesis of crystalline materials. RSC Advances, 2014, 4, 45903-45919.	3.6	56
83	Synthesis of doped and undoped γ-alumina spherical particles by a new sol–gel hybrid process and their application for methanol dehydration. Journal of Sol-Gel Science and Technology, 2013, 66, 145-154.	2.4	3
84	4-tert-butylcalix[4]arene-based porous structures. Russian Journal of Physical Chemistry A, 2013, 87, 783-788.	0.6	1
85	Synthesis and enhanced thermal stability of albumins@alumina: towards injectable sol–gel materials. Chemical Communications, 2013, 49, 5636.	4.1	46
86	A simple preparation of highly photoactive Fe(III)-doped titania nanocrystals by annealing-free approach. Journal of Alloys and Compounds, 2013, 581, 675-678.	5.5	9
87	The influence of silver particles of different morphologies on the photoactivity of coatings in the Ag-TiO2 system. Nanotechnologies in Russia, 2013, 8, 616-620.	0.7	2
88	Sol–gel synthesis, characterization and catalytic activity of γ-alumina with bimodal mesopore distribution. Journal of Sol-Gel Science and Technology, 2013, 68, 155-161.	2.4	4
89	A new approach to apply crystalline titania hydrosols onto a polyester cloth. Mendeleev Communications, 2013, 23, 286-288.	1.6	6
90	New approach to obtaining nanosized pseudobrookite crystals. Nanotechnologies in Russia, 2012, 7, 452-456.	0.7	2

#	Article	IF	Citations
91	High-Induced Photo-emf and Photocatalytic Properties of Nanostructured TiO2-Based Powders and Films Obtained by the Sol–Gel Template Synthesis. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1034-1040.	3.7	1
92	Low-Temperature Sol-Gel Synthesis, Spectroscopic Properties and Conductivity of the Thin Films of TiO2–CuO Nanoparticles. Mendeleev Communications, 2012, 22, 307-309.	1.6	1
93	Low-temperature sol–gel synthesis of crystalline CoTiO3 coatings without annealing. Journal of Alloys and Compounds, 2012, 543, 172-175.	5.5	15
94	Development of the low-temperature sol-gel synthesis of TiO2 to provide self-cleaning effect on the textile materials. Nanotechnologies in Russia, 2012, 7, 604-614.	0.7	18
95	Soft-chemistry synthesis of highly active TiO2-CuO heterostructures having high photoactivity and magnetic properties. Nanotechnologies in Russia, 2012, 7, 599-603.	0.7	3
96	Low-temperature sol–gel synthesis photochromic Cu/TiO2 films. Journal of Alloys and Compounds, 2012, 515, 1-3.	5.5	20
97	Low-temperature sol–gel synthesis of nanosized pseudobrookite crystals without heat treatment. Journal of Alloys and Compounds, 2012, 535, 102-107.	5.5	14
98	Microporous structures based on 4-tert-butylcalix[4]arene. Doklady Physical Chemistry, 2012, 447, 210-212.	0.9	0
99	Sol-gel synthesis of photochromic films via silver–titania nanocomposites prepared without heat treatment. Mendeleev Communications, 2012, 22, 27-28.	1.6	13
100	Synthesis of mesoporous γ-alumina by sol–gel process and its characterization and application for sorption of Pu(IV). Journal of Sol-Gel Science and Technology, 2012, 61, 192-196.	2.4	8
101	Studies on the effect of the stabilizer activity on the structure and properties of titania-based hybrid films. Russian Chemical Bulletin, 2011, 60, 1862-1870.	1.5	2
102	Synthesis of organized mesoporous γ-alumina templated with polymer–colloidal complex. Journal of Sol-Gel Science and Technology, 2011, 60, 6-10.	2.4	8
103	Surfactant-Assisted Sol-Gel Synthesis of TiO ₂ with Uniform Particle Size Distribution. International Journal of Inorganic Chemistry, 2011, 2011, 1-8.	0.6	22
104	Effect of nature of templates on formation mechanism of aluminum oxide mesoporous structure. Colloid Journal, 2010, 72, 163-167.	1.3	1
105	Study of surfaces of TiO2-based nanostructured films obtained under action of various templates. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 555-558.	1.1	2
106	Sol-gel synthesis of nanostructured materials based on aluminum oxide with preset texture properties. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 582-586.	1.1	4
107	Superhydrofobic effect of hybrid organo-inorganic materials. Journal of Sol-Gel Science and Technology, 2010, 53, 312-315.	2.4	11
108	Sol–gel synthesis, characterization and catalytic activity of mesoporous γ-alumina prepared from boehmite sol by different methods. Journal of Sol-Gel Science and Technology, 2010, 56, 333-339.	2.4	30

#	Article	IF	CITATIONS
109	Application of polyethyleneimine to obtain a mesoporous CuO–Al2O3 composite. Mendeleev Communications, 2009, 19, 222-223.	1.6	9
110	Sol–gel synthesis of titanium dioxide-based films possessing highly ordered channel structures. Mendeleev Communications, 2009, 19, 340-341.	1.6	6
111	Mechano-bactericidal anisotropic particles for oral biofilm treatment. Journal of Materials Chemistry B, O, , .	5.8	1