Rong-hua Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482798/publications.pdf

Version: 2024-02-01

44 papers 1,082 citations

16 h-index 32 g-index

44 all docs

44 docs citations

44 times ranked 1592 citing authors

#	Article	IF	Citations
1	Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1700278.	19.5	268
2	Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5ÂV LiNi _{0.5} Mn _{1.5} O ₄ -based lithium-ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2019, 7, 8292-8301.	10.3	82
3	Organic Cathode Materials for Sodiumâ€lon Batteries: From Fundamental Research to Potential Commercial Application. Advanced Functional Materials, 2022, 32, 2107718.	14.9	75
4	Polycarbonyl (quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries. Electrochimica Acta, 2014, 146, 447-454.	5 . 2	51
5	Chemical compositions and antibacterial activities of essential oils extracted from Alpinia guilinensis against selected foodborne pathogens. Industrial Crops and Products, 2016, 83, 607-613.	5.2	44
6	Supramolecule-Inspired Fabrication of Carbon Nanoparticles In Situ Anchored Graphene Nanosheets Material for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26775-26782.	8.0	39
7	Electrochemical behavior and simultaneous determination of catechol, resorcinol, and hydroquinone using thermally reduced carbon nano-fragment modified glassy carbon electrode. Analytical Methods, 2016, 8, 605-613.	2.7	37
8	C ₁₀ H ₄ O ₂ S ₂ /graphene composite as a cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18409-18415.	10.3	35
9	Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries. Scientific Reports, 2016, 6, 23515.	3.3	34
10	Self-assembled Co 3 O 4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries. Electrochimica Acta, 2016, 188, 909-916.	5. 2	34
11	Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries. Electrochimica Acta, 2016, 190, 843-851.	5.2	33
12	Synthesis, crystal structures and properties of Ln(iii)–Cu(i)–Na(i) and Ln(iii)–Ag(i) heterometallic coordination polymers. CrystEngComm, 2011, 13, 3910.	2.6	29
13	A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries. Electrochimica Acta, 2015, 174, 985-991.	5.2	29
14	Facile synthesis of Li ₂ C ₈ H ₄ O ₄ â€"graphene composites as high-rate and sustainable anode materials for lithium ion batteries. RSC Advances, 2014, 4, 59498-59502.	3.6	27
15	TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Metals, 2011, 30, 589-594.	7.1	22
16	Controlled synthesis, structures and properties of one-, two-, and three-dimensional lanthanide coordination polymers based on (8-quinolyloxy)acetate. CrystEngComm, 2010, 12, 216-225.	2.6	18
17	Preparation and performance of Li $4\mathrm{C}10\mathrm{H}4\mathrm{O}8$ with multi-carboxyl groups as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2016, 782, 202-206.	3.8	17
18	Two new three-dimensional metalâ \in organic frameworks with 4-connected diamondoid and unusual (6,16)-connected net topologies based on planar tetranuclear squares as secondary building units. CrystEngComm, 2016, 18, 1174-1183.	2.6	15

#	Article	IF	CITATIONS
19	Synthesis, Characterization and Thermal Behavior of Two 4dâ€4f Coordination Polymers Based on N and O Donor Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 393-398.	1.2	14
20	Synthesis, crystal structure, and characterization of two lanthanide coordination polymers based on isonicotinate ligand. Journal of Coordination Chemistry, 2010, 63, 3165-3174.	2.2	13
21	Syntheses and characterization of three lanthanide(III) complexes containing pyridine-3,5-dicarboxylic acid and oxalic acid ligands. Journal of Coordination Chemistry, 2009, 62, 2796-2803.	2.2	12
22	Superfine TiO2/SnO2/Carbon Hybrid Nanocomposite with Greatly Enhanced Electrochemical Properties. Electrochimica Acta, 2014, 147, 603-609.	5.2	12
23	Exploring structural stability mechanism of TiO2 encapsulated in 3D flower-like SnS2 anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2020, 857, 113740.	3.8	12
24	Efficient Syntheses and Complexation Studies of Diacetyleneâ€Containing Macrocyclic Polyethers. European Journal of Organic Chemistry, 2011, 2011, 562-568.	2.4	11
25	Synthesis of layered materials by ultrasonic/microwave-assisted coprecipitation method: A case study of LiNi0.5Co0.2Mn0.3O2. Sustainable Materials and Technologies, 2018, 18, e00083.	3.3	11
26	Holey graphene/MnO ₂ nanosheets with open ion channels for highâ€performance solidâ€state asymmetric supercapacitors. International Journal of Energy Research, 2020, 44, 3446-3457.	4.5	10
27	Interfacial engineering facilitating robust Li _{6.35} Ga _{0.15} La ₃ Zr _{1.8} Nb _{0.2} O ₁₂ for all-solid-state lithium batteries. Sustainable Energy and Fuels, 2021, 5, 2077-2084.	4.9	10
28	A novel shuttle-like Fe ₃ O ₄ â€"Co ₃ O ₄ self-assembling architecture with highly reversible lithium storage. RSC Advances, 2015, 5, 70527-70535.	3.6	9
29	C14H6O4Na2/graphene composite as a high performance sodium storage cathode. Journal of Electroanalytical Chemistry, 2020, 877, 114749.	3.8	9
30	The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1675-1683.	4.9	8
31	Graphene-Supported Naphthalene-Based Polyimide Composite as a High-Performance Sodium Storage Cathode. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11448-11456.	8.0	8
32	The construction of two lanthanide coordination polymers based on 5-hydroxyisophthalate and bipyridine. Journal of Coordination Chemistry, 2013, 66, 2659-2668.	2.2	7
33	A novel Eu(III) –Ag(I) heterometallic coordination polymer based on planar hexanuclear heterometallic second building unit. Inorganic Chemistry Communication, 2014, 50, 75-78.	3.9	7
34	Enhancing the understanding of the redox properties of lithium-inserted anthraquinone derivatives by regulating molecular structure. Journal of Electroanalytical Chemistry, 2021, 887, 115172.	3.8	6
35	Triphenylamine–thiazolothiazole–benzodithiophene based conjugated copolymers for polymer solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 4705-4710.	2.2	5
36	Structural modulation of anthraquinone with different functional groups and its effect on electrochemical properties for lithium-ion batteries. Journal of Central South University, 2019, 26, 1449-1457.	3.0	5

#	Article	IF	CITATIONS
37	Mechanism of a Lithiated Interlayer for Improving the Cycle Life of High Voltage Li-lon Batteries Using a Commercial Carbonate Electrolyte. Journal of Physical Chemistry C, 2020, 124, 8057-8066.	3.1	5
38	Investigation on the pseudocapacitive charge storage mechanism of MnO2 in various electrolytes by electrochemical quartz crystal microbalance (EQCM). Ionics, 2019, 25, 2393-2399.	2.4	4
39	Hydrothermal Synthesis, Crystal Structure and Thermal Stability of two 3dâ€4f Heterometallic Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2381-2384.	1.2	3
40	2D <i>Ln</i> ^{III} (Nd/La)â€Ag ^I Heterometallic and Tm ^{III} Homometallic Coordination Polymers Based on Pyridine Dicarboxylate ÂŁigands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 147-152.	1.2	3
41	Construction of Two 3D Main Group Coordination Polymers Based on 2â€(2â€Pyridyl)â€4,5â€imidazoleâ€dicarboxylic Acid: Structures and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2677-2682.	1.2	3
42	Effect of different shell structure on lithium storage properties of MoS2 anode. Journal of Electroanalytical Chemistry, 2022, 905, 115972.	3.8	3
43	Synthesis, Structure and Thermal Behavior of a New Coordination Polymer Based on Mixed Pyrazine-2-carboxylate and Oxalate Ligands. Journal of Chemical Crystallography, 2011, 41, 596-600.	1.1	2
44	Enhanced lithium storage properties achieved by TiO2 reinforced 2D CuO clusters. Sustainable Materials and Technologies, 2019, 21, e00097.	3.3	1