
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4827850/publications.pdf Version: 2024-02-01



Νλετλιι Ρλζ

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Test-retest and repositioning effects of white matter microstructure measurements in selected white matter tracts. Neurolmage Reports, 2022, 2, 100096.                                                                                           | 0.5 | 1         |
| 2  | Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber,<br>Density, and Myelin Content. Cerebral Cortex, 2021, 31, 1032-1045.                                                                           | 1.6 | 19        |
| 3  | Hippocampal subfield volumetry from structural isotropic 1 mm <sup>3</sup> <scp>MRI</scp> scans: A<br>note of caution. Human Brain Mapping, 2021, 42, 539-550.                                                                                    | 1.9 | 84        |
| 4  | Lost Dynamics and the Dynamics of Loss: Longitudinal Compression of Brain Signal Variability is<br>Coupled with Declines in Functional Integration and Cognitive Performance. Cerebral Cortex, 2021, 31,<br>5239-5252.                            | 1.6 | 17        |
| 5  | Changes in cerebral arterial pulsatility and hippocampal volume: a transcranial doppler ultrasonography study. Neurobiology of Aging, 2021, 108, 110-121.                                                                                         | 1.5 | 2         |
| 6  | Age-related decline in executive function as a hallmark of cognitive ageing in primates: an overview of<br>cognitive and neurobiological studies. Philosophical Transactions of the Royal Society B: Biological<br>Sciences, 2020, 375, 20190618. | 1.8 | 46        |
| 7  | Poor glucose regulation is associated with declines in well-being among older men, but not women<br>Psychology and Aging, 2020, 35, 204-211.                                                                                                      | 1.4 | 3         |
| 8  | Progress update from the hippocampal subfields group. Alzheimer's and Dementia: Diagnosis,<br>Assessment and Disease Monitoring, 2019, 11, 439-449.                                                                                               | 1.2 | 34        |
| 9  | Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 2019, 83, 124-129.                                                                  | 1.5 | 223       |
| 10 | White-matter microstructural properties of the corpus callosum: test–retest and repositioning effects in two parcellation schemes. Brain Structure and Function, 2019, 224, 3373-3385.                                                            | 1.2 | 5         |
| 11 | Metabolic risk affects fluid intelligence changes in healthy adults Psychology and Aging, 2019, 34, 912-920.                                                                                                                                      | 1.4 | 6         |
| 12 | Fluid intelligence and gross structural properties of the cerebral cortex in middle-aged and older adults: A multi-occasion longitudinal study. NeuroImage, 2018, 172, 21-30.                                                                     | 2.1 | 34        |
| 13 | Pathways to Brain Aging and Their Modifiers: Free-Radical-Induced Energetic and Neural Decline in Senescence (FRIENDS) Model - A Mini-Review. Gerontology, 2018, 64, 49-57.                                                                       | 1.4 | 88        |
| 14 | Optimization and validation of automated hippocampal subfield segmentation across the lifespan.<br>Human Brain Mapping, 2018, 39, 916-931.                                                                                                        | 1.9 | 36        |
| 15 | Functional Magnetic Resonance Spectroscopy: The "New―MRS for Cognitive Neuroscience and<br>Psychiatry Research. Frontiers in Psychiatry, 2018, 9, 76.                                                                                             | 1.3 | 85        |
| 16 | Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). ELife, 2018, 7, .                                                                                                                                 | 2.8 | 49        |
| 17 | Age differences in arterial and venous extra-cerebral blood flow in healthy adults: contributions of vascular risk factors and genetic variants. Brain Structure and Function, 2017, 222, 2641-2653.                                              | 1.2 | 5         |
| 18 | Jugular Anomalies in Multiple Sclerosis Are Associated with Increased Collateral Venous Flow.<br>American Journal of Neuroradiology, 2017, 38, 1617-1622.                                                                                         | 1.2 | 12        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Test–retest reliability and concurrent validity of in vivo myelin content indices: Myelin water<br>fraction and calibrated T <sub>1</sub> w/T <sub>2</sub> w image ratio. Human Brain Mapping, 2017, 38,<br>1780-1790. | 1.9 | 107       |
| 20 | Incident risk and progression of cerebral microbleeds in healthy adults: a multi-occasion<br>longitudinal study. Neurobiology of Aging, 2017, 59, 22-29.                                                               | 1.5 | 21        |
| 21 | Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiology of Aging, 2017, 59, 135-143.                                                                     | 1.5 | 58        |
| 22 | A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.                                                        | 0.9 | 130       |
| 23 | A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults. NeuroImage, 2017, 146, 492-506.                                                              | 2.1 | 32        |
| 24 | The role of stimulus complexity and salience in memory for face–name associations in healthy adults:<br>Friend or foe?. Psychology and Aging, 2017, 32, 489-505.                                                       | 1.4 | 7         |
| 25 | Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus, 2016, 26, 220-228.                                                                                                      | 0.9 | 123       |
| 26 | Differential effect of age on posterior and anterior hippocampal functional connectivity. NeuroImage, 2016, 133, 468-476.                                                                                              | 2.1 | 72        |
| 27 | White matter and memory in healthy adults: Coupled changes over two years. NeuroImage, 2016, 131, 193-204.                                                                                                             | 2.1 | 51        |
| 28 | Adult age differences in subcortical myelin content are consistent with protracted myelination and unrelated to diffusion tensor imaging indices. NeuroImage, 2016, 143, 26-39.                                        | 2.1 | 93        |
| 29 | Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: A multi-occasion longitudinal study. Neurolmage, 2016, 128, 11-20.                                                                 | 2.1 | 64        |
| 30 | Regional brain shrinkage and change in cognitive performance over two years: The bidirectional influences of the brain and cognitive reserve factors. NeuroImage, 2016, 126, 15-26.                                    | 2.1 | 57        |
| 31 | Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up.<br>NeuroImage, 2016, 125, 74-83.                                                                                  | 2.1 | 99        |
| 32 | Changes in Search Path Complexity and Length During Learning of a Virtual Water Maze: Age<br>Differences and Differential Associations with Hippocampal Subfield Volumes. Cerebral Cortex, 2016,<br>26, 2391-2401.     | 1.6 | 30        |
| 33 | Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and<br>Regional Brain Volume. Cerebral Cortex, 2015, 25, 3122-3131.                                                         | 1.6 | 32        |
| 34 | Jugular Venous Flow Abnormalities in Multiple Sclerosis Patients Compared to Normal Controls.<br>Journal of Neuroimaging, 2015, 25, 600-607.                                                                           | 1.0 | 25        |
| 35 | Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.                  | 2.1 | 284       |
| 36 | Normal-appearing cerebral white matter in healthy adults: mean change over 2 years and individual differences in change. Neurobiology of Aging, 2015, 36, 1834-1848.                                                   | 1.5 | 58        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Striatal Iron Content Predicts Its Shrinkage and Changes in Verbal Working Memory after Two Years<br>in Healthy Adults. Journal of Neuroscience, 2015, 35, 6731-6743.                                                     | 1.7 | 92        |
| 38 | Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods.<br>Neuropsychology Review, 2015, 25, 272-287.                                                                          | 2.5 | 106       |
| 39 | Age related differences in reaction time components and diffusion properties of normal-appearing white matter in healthy adults. Neuropsychologia, 2015, 66, 246-258.                                                     | 0.7 | 34        |
| 40 | Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant. Brain Structure and Function, 2015, 220, 2663-2674.                                     | 1.2 | 60        |
| 41 | Genetic variants and cognitive aging: Destiny or a nudge?. Psychology and Aging, 2014, 29, 359-362.                                                                                                                       | 1.4 | 15        |
| 42 | Reduced cerebral perfusion predicts greater depressive symptoms and cognitive dysfunction at a 1â€year<br>followâ€up in patients with heart failure. International Journal of Geriatric Psychiatry, 2014, 29,<br>428-436. | 1.3 | 43        |
| 43 | Executive dysfunction is independently associated with reduced functional independence in heart failure. Journal of Clinical Nursing, 2014, 23, 829-836.                                                                  | 1.4 | 36        |
| 44 | Accelerating Cortical Thinning: Unique to Dementia or Universal in Aging?. Cerebral Cortex, 2014, 24, 919-934.                                                                                                            | 1.6 | 250       |
| 45 | Grasp force matching and brain iron content estimated in vivo in older women. Brain Imaging and<br>Behavior, 2014, 8, 579-587.                                                                                            | 1.1 | 15        |
| 46 | Higher BMI is associated with reduced brain volume in heart failure. BMC Obesity, 2014, 1, 4.                                                                                                                             | 3.1 | 7         |
| 47 | Decreased physical activity predicts cognitive dysfunction and reduced cerebral blood flow in heart failure. Journal of the Neurological Sciences, 2014, 339, 169-175.                                                    | 0.3 | 45        |
| 48 | Regional brain shrinkage over two years: Individual differences and effects of pro-inflammatory genetic polymorphisms. NeuroImage, 2014, 103, 334-348.                                                                    | 2.1 | 45        |
| 49 | Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neuroscience and Biobehavioral Reviews, 2014, 42, 180-192.                                               | 2.9 | 456       |
| 50 | Turning bias in virtual spatial navigation: Age-related differences and neuroanatomical correlates.<br>Biological Psychology, 2014, 96, 8-19.                                                                             | 1.1 | 22        |
| 51 | Greater physical activity is associated with better cognitive function in heart failure Health<br>Psychology, 2014, 33, 1337-1343.                                                                                        | 1.3 | 17        |
| 52 | Life-span plasticity of the brain and cognition: From questions to evidence and back. Neuroscience and<br>Biobehavioral Reviews, 2013, 37, 2195-2200.                                                                     | 2.9 | 35        |
| 53 | Age-related differences in iron content of subcortical nuclei observed in vivo: A meta-analysis.<br>NeuroImage, 2013, 70, 113-121.                                                                                        | 2.1 | 82        |
| 54 | Independent and interactive effects of blood pressure and cardiac function on brain volume and<br>white matter hyperintensities in heart failure. Journal of the American Society of Hypertension, 2013, 7,<br>336-343.   | 2.3 | 27        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Poorer physical fitness is associated with reduced structural brain integrity in heart failure. Journal of the Neurological Sciences, 2013, 328, 51-57.                                    | 0.3 | 29        |
| 56 | Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiology of Aging, 2013, 34, 2239-2247.                                                              | 1.5 | 319       |
| 57 | Differential brain shrinkage over 6months shows limited association with cognitive practice. Brain and Cognition, 2013, 82, 171-180.                                                       | 0.8 | 42        |
| 58 | Does variability in cognitive performance correlate with frontal brain volume?. NeuroImage, 2013, 64, 209-215.                                                                             | 2.1 | 53        |
| 59 | Vascular Risk Moderates Associations between Hippocampal Subfield Volumes and Memory. Journal of Cognitive Neuroscience, 2013, 25, 1851-1862.                                              | 1.1 | 58        |
| 60 | Dietary Habits Moderate the Association Between Heart Failure and Cognitive Impairment. Journal of<br>Nutrition in Gerontology and Geriatrics, 2013, 32, 106-121.                          | 0.4 | 16        |
| 61 | The adverse impact of type 2 diabetes on brain volume in heart failure. Journal of Clinical and Experimental Neuropsychology, 2013, 35, 309-318.                                           | 0.8 | 15        |
| 62 | The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in<br>Memory. Cerebral Cortex, 2013, 23, 1533-1541.                                           | 1.6 | 83        |
| 63 | Depressive Symptomatology, Exercise Adherence, and Fitness Are Associated With Reduced Cognitive Performance in Heart Failure. Journal of Aging and Health, 2013, 25, 459-477.             | 0.9 | 13        |
| 64 | The Interactive Effects of Cerebral Perfusion and Depression on Cognitive Function in Older Adults<br>With Heart Failure. Psychosomatic Medicine, 2013, 75, 632-639.                       | 1.3 | 27        |
| 65 | Cerebral Perfusion is Associated With White Matter Hyperintensities in Older Adults With Heart<br>Failure. Congestive Heart Failure, 2013, 19, E29-34.                                     | 2.0 | 94        |
| 66 | Cognitive reserve moderates the association between heart failure and cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 1-10.                          | 0.8 | 19        |
| 67 | Age-related differences in recognition memory for items and associations: Contribution of individual differences in working memory and metamemory Psychology and Aging, 2012, 27, 691-700. | 1.4 | 29        |
| 68 | Cognitive Function and Treatment Adherence in Older Adults With Heart Failure. Psychosomatic<br>Medicine, 2012, 74, 965-973.                                                               | 1.3 | 99        |
| 69 | Cognitive profiles in heart failure: A cluster analytic approach. Journal of Clinical and Experimental<br>Neuropsychology, 2012, 34, 509-520.                                              | 0.8 | 27        |
| 70 | Obesity Interacts with Cerebral Hypoperfusion to Exacerbate Cognitive Impairment in Older Adults with Heart Failure. Cerebrovascular Diseases Extra, 2012, 2, 88-98.                       | 0.5 | 60        |
| 71 | Age-related differences in episodic memory: A synergistic contribution of genetic and physiological vascular risk factors Neuropsychology, 2012, 26, 442-450.                              | 1.0 | 19        |
| 72 | Depression is associated with reduced physical activity in persons with heart failure Health<br>Psychology, 2012, 31, 754-762.                                                             | 1.3 | 63        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | White matter deterioration in 15 months: latent growth curve models in healthy adults.<br>Neurobiology of Aging, 2012, 33, 429.e1-429.e5.                                                                                                                         | 1.5 | 41        |
| 74 | Poor sleep quality and reduced cognitive function in persons with heart failure. International Journal of Cardiology, 2012, 156, 248-249.                                                                                                                         | 0.8 | 26        |
| 75 | Volume of white matter hyperintensities in healthy adults: Contribution of age, vascular risk factors,<br>and inflammation-related genetic variants. Biochimica Et Biophysica Acta - Molecular Basis of Disease,<br>2012, 1822, 361-369.                          | 1.8 | 139       |
| 76 | The independent association of hypertension with cognitive function among older adults with heart failure. Journal of the Neurological Sciences, 2012, 323, 216-220.                                                                                              | 0.3 | 34        |
| 77 | Age-related differences in memory and executive functions in healthy APOE ɛ4 carriers: The contribution of individual differences in prefrontal volumes and systolic blood pressure. Neuropsychologia, 2012, 50, 704-714.                                         | 0.7 | 45        |
| 78 | The 2-minute step test is independently associated with cognitive function in older adults with heart failure. Aging Clinical and Experimental Research, 2012, 24, 468-74.                                                                                        | 1.4 | 28        |
| 79 | Differential effects of age and history of hypertension on regional brain volumes and iron.<br>NeuroImage, 2011, 54, 750-759.                                                                                                                                     | 2.1 | 63        |
| 80 | Effects of age, genes, and pulse pressure on executive functions in healthy adults. Neurobiology of Aging, 2011, 32, 1124-1137.                                                                                                                                   | 1.5 | 42        |
| 81 | Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 2011, 32, 916-932.                                                                                                                                      | 1.5 | 437       |
| 82 | Hippocampal Subfield Volumes: Age, Vascular Risk, and Correlation with Associative Memory.<br>Frontiers in Aging Neuroscience, 2011, 3, 2.                                                                                                                        | 1.7 | 128       |
| 83 | Brain, mind, insulin—what is normal and do we need to know?. Nature Reviews Endocrinology, 2011, 7,<br>636-637.                                                                                                                                                   | 4.3 | 7         |
| 84 | Only time will tell: Cross-sectional studies offer no solution to the age–brain–cognition triangle:<br>Comment on Salthouse (2011) Psychological Bulletin, 2011, 137, 790-795.                                                                                    | 5.5 | 145       |
| 85 | News of cognitive cure for age-related brain shrinkage is premature: A comment on Burgmans et al.<br>(2009) Neuropsychology, 2010, 24, 255-257.                                                                                                                   | 1.0 | 15        |
| 86 | Associative deficit in recognition memory in a lifespan sample of healthy adults Psychology and Aging, 2010, 25, 940-948.                                                                                                                                         | 1.4 | 85        |
| 87 | Adult Age Differences and the Role of Cognitive Resources in Perceptual–Motor Skill Acquisition:<br>Application of a Multilevel Negative Exponential Model. Journals of Gerontology - Series B<br>Psychological Sciences and Social Sciences, 2010, 65B, 163-173. | 2.4 | 25        |
| 88 | Trajectories of brain aging in middle-aged and older adults: Regional and individual differences.<br>NeuroImage, 2010, 51, 501-511.                                                                                                                               | 2.1 | 504       |
| 89 | Episodic memory and organizational strategy in free recall in unipolar depression: The role of<br>cognitive support and executive functions. Journal of Clinical and Experimental Neuropsychology,<br>2010, 32, 719-727.                                          | 0.8 | 38        |
| 90 | Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension. NeuroImage, 2010, 49, 2083-2093.                                                                                                               | 2.1 | 69        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | BDNF val66met polymorphism influences age differences in microstructure of the corpus callosum.<br>Frontiers in Human Neuroscience, 2009, 3, 19.                                                                            | 1.0 | 37        |
| 92  | High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cerebral Cortex, 2009, 19, 2001-2012.                                                                                                      | 1.6 | 580       |
| 93  | Minute Effects of Sex on the Aging Brain: A Multisample Magnetic Resonance Imaging Study of Healthy<br>Aging and Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 8774-8783.                                         | 1.7 | 111       |
| 94  | Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 2009, 47, 916-927.                                       | 0.7 | 398       |
| 95  | Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 2009, 47, 1200-1203.                                                         | 0.7 | 108       |
| 96  | Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 2009, 1297, 41-56.                                                                          | 1.1 | 172       |
| 97  | Decline and Compensation in Aging Brain and Cognition: Promises and Constraints. Neuropsychology Review, 2009, 19, 411-414.                                                                                                 | 2.5 | 31        |
| 98  | Life Span Adult Faces: Norms for Age, Familiarity, Memorability, Mood, and Picture Quality.<br>Experimental Aging Research, 2009, 35, 268-275.                                                                              | 0.6 | 44        |
| 99  | Synergistic effects of the MTHFR C677T polymorphism and hypertension on spatial navigation.<br>Biological Psychology, 2009, 80, 240-245.                                                                                    | 1.1 | 22        |
| 100 | Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 2009, 30, 1657-1676.                                                       | 1.5 | 198       |
| 101 | Ageing and organisation strategies in free recall: The role of cognitive flexibility. European Journal of<br>Cognitive Psychology, 2009, 21, 347-365.                                                                       | 1.3 | 62        |
| 102 | Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by<br>adjustment for local variability in gray/white contrast: A multi-sample MRI study. NeuroImage, 2009, 47,<br>1545-1557. | 2.1 | 103       |
| 103 | Genetic and vascular modifiers of age-sensitive cognitive skills: Effects of COMT, BDNF, ApoE, and hypertension Neuropsychology, 2009, 23, 105-116.                                                                         | 1.0 | 129       |
| 104 | Aging, vascular risk, and cognition: Blood glucose, pulse pressure, and cognitive performance in healthy adults Psychology and Aging, 2009, 24, 154-162.                                                                    | 1.4 | 70        |
| 105 | Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning Neuropsychology, 2009, 23, 475-491.                                                                                   | 1.0 | 28        |
| 106 | 4 A Systems Approach to the Aging Brain: Neuroanatomic Changes, Their Modifiers, and Cognitive Correlates. , 2009, , 43-70.                                                                                                 |     | 34        |
| 107 | Age-Related Differences in Acquisition of Perceptual-Motor Skills: Working Memory as a Mediator.<br>Aging, Neuropsychology, and Cognition, 2008, 15, 165-183.                                                               | 0.7 | 20        |
| 108 | Neuroanatomical Correlates of Fluid Intelligence in Healthy Adults and Persons with Vascular Risk<br>Factors. Cerebral Cortex, 2008, 18, 718-726.                                                                           | 1.6 | 120       |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Neuroanatomical and cognitive mediators of age-related differences in episodic memory<br>Neuropsychology, 2008, 22, 491-507.                                                                  | 1.0 | 139       |
| 110 | Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory.<br>Frontiers in Human Neuroscience, 2008, 2, 12.                                                | 1.0 | 29        |
| 111 | Extrahippocampal Contributions to Age Differences in Human Spatial Navigation. Cerebral Cortex, 2007, 17, 1274-1282.                                                                          | 1.6 | 165       |
| 112 | Fragmented Pictures Revisited: Long-Term Changes in Repetition Priming, Relation to Skill Learning, and the Role of Cognitive Resources. Gerontology, 2007, 53, 148-158.                      | 1.4 | 11        |
| 113 | Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults<br>Neuropsychology, 2007, 21, 149-157.                                                        | 1.0 | 225       |
| 114 | Comment on Greenwood (2007): Which side of plasticity?. Neuropsychology, 2007, 21, 676-677.                                                                                                   | 1.0 | 10        |
| 115 | Brain Aging and Its Modifiers: Insights from in Vivo Neuromorphometry and Susceptibility Weighted<br>Imaging. Annals of the New York Academy of Sciences, 2007, 1097, 84-93.                  | 1.8 | 149       |
| 116 | Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 2006, 30, 730-748.                                                     | 2.9 | 953       |
| 117 | Aging and Longitudinal Change in Perceptual-Motor Skill Acquisition in Healthy Adults. Journals of<br>Gerontology - Series B Psychological Sciences and Social Sciences, 2005, 60, P174-P181. | 2.4 | 70        |
| 118 | Age, Sex and Regional Brain Volumes Predict Perceptual-Motor Skill Acquisition. Cortex, 2005, 41, 560-569.                                                                                    | 1.1 | 90        |
| 119 | Selective sparing of brain tissue in postmenopausal women receiving hormone replacement therapy.<br>Neurobiology of Aging, 2005, 26, 1205-1213.                                               | 1.5 | 102       |
| 120 | Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers.<br>Cerebral Cortex, 2005, 15, 1676-1689.                                                | 1.6 | 2,331     |
| 121 | Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults.<br>Journal of Neuroscience, 2004, 24, 956-963.                                              | 1.7 | 222       |
| 122 | Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional<br>differences in volume. Neurobiology of Aging, 2004, 25, 377-396.                     | 1.5 | 617       |
| 123 | Hormone replacement therapy and age-related brain shrinkage: regional effects. NeuroReport, 2004, 15, 2531-2534.                                                                              | 0.6 | 37        |
| 124 | Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia, 2003, 41, 1929-1941.                                   | 0.7 | 381       |
| 125 | Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up.<br>Neuroscience Letters, 2003, 349, 163-166.                                            | 1.0 | 43        |
| 126 | Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans. Journals of Gerontology - Series A<br>Biological Sciences and Medical Sciences, 2003, 58, M176-M180.                               | 1.7 | 777       |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Multiple shifts in the representation of a motor sequence during the acquisition of skilled<br>performance. Proceedings of the National Academy of Sciences of the United States of America, 2003,<br>100, 12492-12497. | 3.3 | 353       |
| 128 | Hypertension and the Brain: Vulnerability of the Prefrontal Regions and Executive Functions<br>Behavioral Neuroscience, 2003, 117, 1169-1180.                                                                           | 0.6 | 267       |
| 129 | Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology,<br>2003, 24, 1849-56.                                                                                              | 1.2 | 202       |
| 130 | Memory in multiple sclerosis: Contextual encoding deficits. Journal of the International<br>Neuropsychological Society, 2002, 8, 395-409.                                                                               | 1.2 | 76        |
| 131 | Age-related differences in the course of cognitive skill acquisition: The role of regional cortical shrinkage and cognitive resources Psychology and Aging, 2002, 17, 72-84.                                            | 1.4 | 85        |
| 132 | Age-related differences in the course of cognitive skill acquisition: the role of regional cortical shrinkage and cognitive resources. Psychology and Aging, 2002, 17, 72-84.                                           | 1.4 | 52        |
| 133 | "Age-related deficits in generation and manipulation of mental images: I. The role of sensorimotor speed and working memory": Correction to Briggs et al. (1999) Psychology and Aging, 2001, 16, 449-449.               | 1.4 | 2         |
| 134 | The cognitive correlates of white matter abnormalities in normal aging: A quantitative review<br>Neuropsychology, 2000, 14, 224-232.                                                                                    | 1.0 | 640       |
| 135 | Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microscopy Research and Technique, 2000, 51, 85-93.                                                       | 1.2 | 137       |
| 136 | Age-related deficits in generation and manipulation of mental images: II. The role of dorsolateral prefrontal cortex Psychology and Aging, 1999, 14, 436-444.                                                           | 1.4 | 78        |
| 137 | Neuroanatomical correlates of cognitive aging: Evidence from structural magnetic resonance imaging Neuropsychology, 1998, 12, 95-114.                                                                                   | 1.0 | 450       |
| 138 | Aging and Olfactory Recognition Memory: Effect of Encoding Strategies and Cognitive Abilities.<br>International Journal of Neuroscience, 1997, 90, 277-291.                                                             | 0.8 | 5         |
| 139 | The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis. Cognitive,<br>Affective and Behavioral Neuroscience, 1995, 23, 240-247.                                                       | 1.2 | 189       |
| 140 | Toward the neural basis of verbal priming: A cognitive-neuropsychological synthesis.<br>Neuropsychology Review, 1994, 4, 1-30.                                                                                          | 2.5 | 8         |
| 141 | Pathoclysis in aging human cerebral cortex: Evidence from in vivo MRI morphometry. Cognitive,<br>Affective and Behavioral Neuroscience, 1993, 21, 151-160.                                                              | 1.2 | 35        |
| 142 | Structural brain abnormalities in the major psychoses: A quantitative review of the evidence from computerized imaging Psychological Bulletin, 1990, 108, 93-108.                                                       | 5.5 | 224       |
| 143 | Effects of age and age-related differences in auditory information processing on fluid and crystallized intelligence. Personality and Individual Differences, 1990, 11, 1147-1152.                                      | 1.6 | 20        |
| 144 | Auditory memory and age-related differences in two-tone frequency discrimination: Trace decay and interference. Experimental Aging Research, 1989, 15, 43-47.                                                           | 0.6 | 7         |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Ventriculomegaly in schizophrenia: The role of control groups and the perils of dichotonous thinking. Psychiatry Research, 1988, 26, 245-248.                                     | 1.7 | 10        |
| 146 | Ventriculomegaly in schizophrenia: Is the choice of controls important?. Psychiatry Research, 1988, 24, 71-77.                                                                    | 1.7 | 29        |
| 147 | Effects of Fenfluramine on EEG and Brainstem Average Evoked Response in Infantile Autism.<br>Neuropsychobiology, 1987, 18, 105-109.                                               | 0.9 | 4         |
| 148 | Morphological brain abnormalities in schizophrenia determined by computed tomography: A problem of measurement?. Psychiatry Research, 1987, 22, 91-98.                            | 1.7 | 28        |
| 149 | Volumetric asymmetries of the human brain: Intellectual correlates. Brain and Cognition, 1987, 6, 15-23.                                                                          | 0.8 | 55        |
| 150 | On sense and senses: Intelligence and auditory information processing. Personality and Individual Differences, 1987, 8, 201-210.                                                  | 1.6 | 79        |
| 151 | Visual augmenting/reducing and P300 in autistic children. Journal of Autism and Developmental Disorders, 1987, 17, 231-242.                                                       | 1.7 | 34        |
| 152 | Brain stem evoked response suppression during speech production. Brain and Language, 1986, 27, 50-55.                                                                             | 0.8 | 20        |
| 153 | Auditory Brain Stem Evoked Responses in Comatose Head-injured Patients. Neurosurgery, 1986, 18, 173-175.                                                                          | 0.6 | 25        |
| 154 | Brief report: Effects of fenfluramine on behavioral, cognitive, and affective disturbances in autistic children. Journal of Autism and Developmental Disorders, 1985, 15, 97-107. | 1.7 | 47        |
| 155 | Aptitude-related differences in auditory information processing: effects of selective attention and tone duration. Personality and Individual Differences, 1985, 6, 299-304.      | 1.6 | 19        |
| 156 | Fenfluramine Treatment in Infantile Autism. Journal of Nervous and Mental Disease, 1984, 172, 604-612.                                                                            | 0.5 | 34        |