
Trudee Fair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4827684/publications.pdf Version: 2024-02-01

TDUDEE FAID

#	Article	IF	CITATIONS
1	Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reproduction, Fertility and Development, 2008, 20, 368.	0.1	518
2	Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Molecular Reproduction and Development, 2002, 62, 320-327.	1.0	180
3	Culture of in vitro produced bovine zygotes in vitro vs in vivo: Implications for early embryo development and quality. Theriogenology, 2000, 54, 659-673.	0.9	166
4	Maturation of Oocytes in Vitro. Annual Review of Animal Biosciences, 2016, 4, 255-268.	3.6	159
5	Follicular oocyte growth and acquisition of developmental competence. Animal Reproduction Science, 2003, 78, 203-216.	0.5	146
6	Timing of the first cleavage post-insemination affects cryosurvival of in vitro-produced bovine blastocysts. Molecular Reproduction and Development, 1999, 53, 318-324.	1.0	109
7	Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Molecular Reproduction and Development, 2000, 57, 146-152.	1.0	108
8	Bovine DNA Methylation Imprints Are Established in an Oocyte Size-Specific Manner, Which Are Coordinated with the Expression of the DNMT3 Family Proteins1. Biology of Reproduction, 2012, 86, 67.	1.2	91
9	RNA Sequencing Reveals Novel Gene Clusters in Bovine Conceptuses Associated with Maternal Recognition of Pregnancy and Implantation1. Biology of Reproduction, 2011, 85, 1143-1151.	1.2	88
10	Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I. Molecular Reproduction and Development, 2000, 57, 204-209.	1.0	86
11	Gene expression profile of cumulus cells derived from cumulus - oocyte complexes matured either in vivo or in vitro. Reproduction, Fertility and Development, 2009, 21, 451.	0.1	83
12	Analysis of differential maternal mRNA expression in developmentally competent and incompetent bovine two-cell embryos. Molecular Reproduction and Development, 2004, 67, 136-144.	1.0	73
13	Sequential analysis of global gene expression profiles in immature and in vitro matured bovine ocytes: potential molecular markers of oocyte maturation. BMC Genomics, 2011, 12, 151.	1.2	70
14	Predictive value of bovine follicular components as markers of oocyte developmental potential. Reproduction, Fertility and Development, 2014, 26, 337.	0.1	70
15	The Contribution of the Maternal Immune System to the Establishment of Pregnancy in Cattle. Frontiers in Immunology, 2015, 6, 7.	2.2	67
16	Mammalian oocyte development: checkpoints for competence. Reproduction, Fertility and Development, 2010, 22, 13.	0.1	66
17	Embryo development in dairy cattle. Theriogenology, 2016, 86, 270-277.	0.9	63
18	Effect of embryo source and recipient progesterone environment on embryo development in cattle. Reproduction, Fertility and Development, 2007, 19, 861.	0.1	61

Trudee Fair

#	Article	IF	CITATIONS
19	Ultrastructural modifications in bovine oocytes maintained in meiotic arrest in vitro using roscovitine or butyrolactone. Molecular Reproduction and Development, 2003, 64, 369-378.	1.0	56
20	Characterization of the Th Profile of the Bovine Endometrium during the Oestrous Cycle and Early Pregnancy. PLoS ONE, 2013, 8, e75571.	1.1	54
21	Differentially Expressed Genes in Endometrium and Corpus Luteum of Holstein Cows Selected for High and Low Fertility Are Enriched for Sequence Variants Associated with Fertility1. Biology of Reproduction, 2016, 94, 19.	1.2	53
22	Developmental competence in oocytes and cumulus cells: candidate genes and networks. Systems Biology in Reproductive Medicine, 2012, 58, 88-101.	1.0	49
23	Pivotal Role for Monocytes/Macrophages and Dendritic Cells in Maternal Immune Response to the Developing Embryo in Cattle1. Biology of Reproduction, 2012, 87, 123.	1.2	47
24	Effect of the Post-Fertilization Culture Environment on the Incidence of Chromosome Aberrations in Bovine Blastocysts1. Biology of Reproduction, 2004, 71, 1096-1100.	1.2	46
25	Immunolocalization of Nucleolar Proteins During Bovine Oocyte Growth, Meiotic Maturation, and Fertilization1. Biology of Reproduction, 2001, 64, 1516-1525.	1.2	39
26	DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC Developmental Biology, 2015, 15, 13.	2.1	38
27	Search for the Bovine Homolog of the Murine Ped Gene and Characterization of Its Messenger RNA Expression During Bovine Preimplantation Development1. Biology of Reproduction, 2004, 70, 488-494.	1.2	37
28	Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics, 2014, 104, 177-185.	1.3	36
29	Maturation, fertilisation and culture of bovine oocytes and embryos in an individually identifiable manner: a tool for studying oocyte developmental competence. Reproduction, Fertility and Development, 2010, 22, 839.	0.1	33
30	The ART of studying early embryo development: Progress and challenges in ruminant embryo culture. Theriogenology, 2014, 81, 49-55.	0.9	33
31	Temporal expression of transcripts related to embryo quality in bovine embryos cultured from the two-cell to blastocyst stage in vitro or in vivo. Molecular Reproduction and Development, 2007, 74, 972-977.	1.0	32
32	Effect of protein synthesis inhibition before or during in vitro maturation on subsequent development of bovine oocytes. Theriogenology, 1998, 50, 417-431.	0.9	31
33	Maintenance of meiotic arrest in bovine oocytes in vitro using butyrolactone I: Effects on oocyte ultrastructure and nucleolus function. Molecular Reproduction and Development, 2002, 62, 375-386.	1.0	30
34	DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reproduction, Fertility and Development, 2015, 27, 739.	0.1	27
35	Intragenic sequences in the trophectoderm harbour the greatest proportion of methylation errors in day 17 bovine conceptuses generated using assisted reproductive technologies. BMC Genomics, 2018, 19, 438.	1.2	25
36	Embryonic maternal interaction in cattle and its relationship with fertility. Reproduction in Domestic Animals, 2018, 53, 20-27.	0.6	24

Trudee Fair

#	Article	IF	CITATIONS
37	Classical and non-classical Major Histocompatibility Complex class I gene expression in in vitro derived bovine embryos. Journal of Reproductive Immunology, 2009, 82, 48-56.	0.8	21
38	Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reproduction, Fertility and Development, 2012, 24, 344.	0.1	21
39	Regulation of a Bovine Nonclassical Major Histocompatibility Complex Class I Gene Promoter1. Biology of Reproduction, 2010, 83, 296-306.	1.2	19
40	Predicting embryo quality: mRNA expression and the preimplantation embryo. Reproductive BioMedicine Online, 2005, 11, 340-348.	1.1	18
41	Progesterone Regulation of AVEN Protects Bovine Oocytes from Apoptosis During Meiotic Maturation1. Biology of Reproduction, 2013, 89, 146.	1.2	12
42	Fertility and genomics: comparison of gene expression in contrasting reproductive tissues of female cattle. Reproduction, Fertility and Development, 2016, 28, 11.	0.1	11
43	Embryo development in cattle and interactions with the reproductive tract. Reproduction, Fertility and Development, 2019, 31, 118.	0.1	11
44	Application of multi-omics data integration and machine learning approaches to identify epigenetic and transcriptomic differences between in vitro and in vivo produced bovine embryos. PLoS ONE, 2021, 16, e0252096.	1.1	11
45	Immunological aspects of ovarian follicle ovulation and corpus luteum formation in cattle. Reproduction, 2021, 162, 209-225.	1.1	11
46	Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation. Animal Reproduction, 2019, 16, 440-448.	0.4	10
47	ATRX is a novel progesterone-regulated protein and biomarker of low developmental potential in mammalian oocytes. Reproduction, 2017, 153, 671-682.	1.1	8
48	Location relative to the corpus luteum affects bovine endometrial response to a conceptus. Reproduction, 2020, 159, 643-657.	1.1	5
49	Imprinted and DNA methyltransferase gene expression in the endometrium during the pre- and peri-implantation period in cattle. Reproduction, Fertility and Development, 2017, 29, 1729.	0.1	4
50	Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Animal Reproduction, 2019, 16, 508-523.	0.4	4
51	X-linked α-thalassemia with mental retardation is downstream of protein kinase A in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damageâ€. Biology of Reproduction, 2019, 100, 1238-1249.	1.2	2
52	Immunological Characterization of the Bovine Endometrial Response to the Presence of an Embryo: Is the Th1/Th2 Paradigm Important?. Biology of Reproduction, 2010, 83, 97-97.	1.2	2
53	In Vitro Manipulations of Bovine Oocytes and Embryos Are Associated with Aberrant Methylation at Maternally Imprinted Loci Biology of Reproduction, 2011, 85, 121-121.	1.2	2
54	Oocyte Development in Cattle: Factors Affecting Competence Biology of Reproduction, 2012, 87, 12-12.	1.2	2

#	Article	IF	CITATIONS
55	Characterization of the Non-Classical Major Histocompatibility Complex Class-I Gene (NC1) Promoter in a Bovine Endometrial Cell Line Biology of Reproduction, 2009, 81, 601-601.	1.2	0
56	Identification of Candidate Genes and Networks Associated with Developmental Competence in Oocytes and Cumulus Cells: A Cross Species Comparison of Gene Expression in Models of Increased and Decreased Competence Biology of Reproduction, 2011, 85, 95-95.	1.2	0