List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4827417/publications.pdf Version: 2024-02-01

		36691	32181
146	12,169	53	105
papers	citations	h-index	g-index
152 all docs	152 docs citations	152 times ranked	10015 citing authors

#	Article	IF	CITATIONS
1	Effect of minor amounts of β-calcium pyrophosphate and hydroxyapatite on the physico-chemical properties and osteoclastic resorption of β-tricalcium phosphate cylinders. Bioactive Materials, 2022, 10, 222-235.	8.6	11
2	Boneâ€onâ€aâ€Chip: A Microscale 3D Biomimetic Model to Study Bone Regeneration. Advanced Engineering Materials, 2022, 24, .	1.6	12
3	Erratum to â€~Thermal treatment at 500°C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study' [Acta Biomaterialia, 121 (2021) 621-636]. Acta Biomaterialia, 2022, , .	4.1	0
4	A human bone infection organ model for biomaterial research. Acta Biomaterialia, 2022, 144, 230-241.	4.1	9
5	Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomaterialia, 2022, 145, 1-24.	4.1	10
6	Evaluation of imaging setups for quantitative phase contrast nanoCT of mineralized biomaterials. Journal of Synchrotron Radiation, 2022, 29, 843-852.	1.0	8
7	Repair of a critical-size defect in estrogen-deficient mice treated with bisphosphonates. Bone Reports, 2022, 16, 101323.	0.2	0
8	Chemically pure β-tricalcium phosphate powders: Evidence of two crystal structures. Journal of the European Ceramic Society, 2021, 41, 1683-1694.	2.8	13
9	Thermal treatment at 500°C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomaterialia, 2021, 121, 621-636.	4.1	12
10	Repair of a critical size defect in osteoporotic mice. Bone Reports, 2021, 14, 100834.	0.2	0
11	Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 2021, 275, 120912.	5.7	14
12	In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes. Acta Biomaterialia, 2020, 102, 440-457.	4.1	32
13	A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation. Journal of the European Ceramic Society, 2020, 40, 6095-6106.	2.8	18
14	β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomaterialia, 2020, 113, 23-41.	4.1	342
15	A BMP/activin A chimera is superior to native BMPs and induces bone repair in nonhuman primates when delivered in a composite matrix. Science Translational Medicine, 2019, 11, .	5.8	47
16	A proposed mechanism for material-induced heterotopic ossification. Materials Today, 2019, 22, 132-141.	8.3	118
17	Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomaterialia, 2019, 89, 391-402.	4.1	37
18	Bone Substitute Materials. , 2019, , 513-529.		3

Bone Substitute Materials. , 2019, , 513-529. 18

#	Article	IF	CITATIONS
19	Multimodal analysis of <i>in vivo</i> resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1567-1577.	1.6	10
20	In vitro study of new combinations for local antibiotic therapy with calcium sulphate - Near constant release of ceftriaxone offers new treatment options. Journal of Bone and Joint Infection, 2018, 3, 212-221.	0.6	8
21	Bisphosphonates reduce biomaterial turnover in healing of critical-size rat femoral defects. Journal of Orthopaedic Surgery, 2018, 26, 230949901880248.	0.4	9
22	Joint academic and industrial efforts towards innovative and efficient solutions for clinical needs. Journal of Materials Science: Materials in Medicine, 2018, 29, 129.	1.7	9
23	Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Acta Biomaterialia, 2017, 51, 433-446.	4.1	23
24	Effect of sex-hormone levels, sex, body mass index and other host factors on human craniofacial bone regeneration with bioactive tricalcium phosphate grafts. Biomaterials, 2017, 123, 48-62.	5.7	14
25	A novel method for segmenting and aligning the pre- and post-implantation scaffolds of resorbable calcium-phosphate bone substitutes. Acta Biomaterialia, 2017, 54, 441-453.	4.1	7
26	Characterization and distribution of mechanically competent mineralized tissue in micropores of Î ² -tricalcium phosphate bone substitutes. Materials Today, 2017, 20, 106-115.	8.3	81
27	Surrogate Outcome Measures of In Vitro Osteoclast Resorption of Î ² Tricalcium Phosphate. Advanced Healthcare Materials, 2017, 6, 1600947.	3.9	9
28	Hydrogen-substituted β-tricalcium phosphate synthesized in organic media. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 875-884.	0.5	22
29	Innovating in the medical device industry – challenges & opportunities ESB 2015 translational research symposium. Journal of Materials Science: Materials in Medicine, 2016, 27, 144.	1.7	19
30	Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. International Journal of Pharmaceutics, 2016, 511, 79-89.	2.6	9
31	Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation. Analytical Chemistry, 2016, 88, 3826-3835.	3.2	18
32	Calcium phosphates in biomedical applications: materials for the future?. Materials Today, 2016, 19, 69-87.	8.3	642
33	Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α ↔ β-tricalcium phosphate phase transformations. Journal of the European Ceramic Society, 2016, 36, 817-827.	2.8	59
34	Calorimetry investigations of milled α- tricalcium phosphate (α- TCP) powders to determine the formation enthalpies of α- TCP and X-ray amorphous tricalcium phosphate. Acta Biomaterialia, 2015, 23, 338-346.	4.1	14
35	Textured and hierarchically structured calcium phosphate ceramic blocks through hydrothermal treatment. Biomaterials, 2015, 67, 93-103.	5.7	33
36	Interlaboratory studies on in vitro test methods for estimating in vivo resorption of calcium phosphate ceramics. Acta Biomaterialia, 2015, 25, 347-355.	4.1	24

#	Article	IF	CITATIONS
37	Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis. Journal of Materials Science: Materials in Medicine, 2015, 26, 130.	1.7	18
38	Design of an inorganic dual-paste apatite cement using cation exchange. Journal of Materials Science: Materials in Medicine, 2015, 26, 63.	1.7	23
39	Progressing innovation in biomaterials. From the bench to the bed of patients. Journal of Materials Science: Materials in Medicine, 2015, 26, 228.	1.7	7
40	Growth kinetics of hexagonal sub-micrometric Î ² -tricalcium phosphate particles in ethylene glycol. Acta Biomaterialia, 2014, 10, 3922-3930.	4.1	17
41	The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomaterialia, 2014, 10, 1793-1805.	4.1	120
42	Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite. Acta Biomaterialia, 2014, 10, 3931-3941.	4.1	46
43	Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus floor augmentation in humans. Biomaterials, 2014, 35, 3154-3163.	5.7	38
44	Phase and size separations occurring during the injection of model pastes composed of β-tricalcium phosphate powder, glass beads and aqueous solutions. Acta Biomaterialia, 2014, 10, 2259-2268.	4.1	22
45	In Vitro Ceramic Scaffold Mineralization: Comparison Between Histological and Micro-Computed Tomographical Analysis. Annals of Biomedical Engineering, 2013, 41, 2666-2675.	1.3	16
46	The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions. Acta Biomaterialia, 2013, 9, 7518-7526.	4.1	29
47	New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomaterialia, 2013, 9, 9149-9158.	4.1	90
48	Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomaterialia, 2013, 9, 5369-5378.	4.1	73
49	Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Biomechanical results. Acta Biomaterialia, 2013, 9, 4845-4855.	4.1	69
50	Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets. Biomaterials, 2013, 34, 6388-6401.	5.7	40
51	Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomaterialia, 2013, 9, 7490-7505.	4.1	71
52	Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter, 2013, 3, e25103.	2.6	115
53	Evaluation of the ultrasonication process for injectability of hydraulic calcium phosphate pastes. Acta Biomaterialia, 2012, 8, 1164-1168.	4.1	18
54	Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases. Acta Biomaterialia, 2012, 8, 3500-3508.	4.1	16

#	Article	IF	CITATIONS
55	Minimally invasive mandibular bone augmentation using injectable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, s15-s23.	1.3	46
56	Bone Grafts and Bone Replacements. , 2012, , 1081-1096.		14
57	Influence of the pore generator on the evolution of the mechanical properties and the porosity and interconnectivity of a calcium phosphate cement. Acta Biomaterialia, 2012, 8, 404-414.	4.1	58
58	Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia, 2012, 8, 373-385.	4.1	193
59	Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society, 2012, 32, 2663-2671.	2.8	212
60	Paper # 157: Microporous Beta-Tricalciumphosphat Scaffolds Populated with Autologous Chondrocytes for Osteochondral Reconstruction. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, e174-e175.	1.3	0
61	Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. Journal of Materials Chemistry, 2011, 21, 13963.	6.7	26
62	Effect of subvoxel processes on non-destructive characterization of Î ² -tricalcium phosphate bone graft substitutes. Acta Biomaterialia, 2011, 7, 4045-4056.	4.1	5
63	Commentary: Deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomaterialia, 2011, 7, 478-484.	4.1	128
64	Thermal Treatments of Calcium Phosphate Biomaterials to Tune the Physico hemical Properties and Modify the In Vitro Osteoclast Response. Advanced Engineering Materials, 2011, 13, B102.	1.6	16
65	The effect of ball milling grinding pathways on the bulk and reactivity properties of calcium phosphate cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 68-79.	1.6	17
66	Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomaterialia, 2011, 7, 907-920.	4.1	396
67	Simulation of the inÂvivo resorption rate of β-tricalcium phosphate bone graft substitutes implanted in a sheep model. Biomaterials, 2011, 32, 6362-6373.	5.7	31
68	Cement Filling Control and Bone Marrow Removal in Vertebral Body Augmentation by Unipedicular Aspiration Technique. Spine, 2010, 35, 353-360.	1.0	17
69	Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Part ІІ: Particle separation study. Acta Biomaterialia, 2010, 6, 250-256.	4.1	33
70	Aqueous impregnation of porous β-tricalcium phosphate scaffolds. Acta Biomaterialia, 2010, 6, 2760-2772.	4.1	46
71	The 22nd European Conference on Biomaterials: retrospective view, facts and figures. Journal of Materials Science: Materials in Medicine, 2010, 21, 843-845.	1.7	0
72	Critical Aspects In The Use Of Injectable Calcium Phosphates In Spinal Surgery. Biomaterials, 2010, 31, 4609-4611.	5.7	5

MARC BOHNER

#	Article	IF	CITATIONS
73	Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomaterialia, 2010, 6, 864-875.	4.1	26
74	Biofilm formation on bone grafts and bone graft substitutes: Comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomaterialia, 2010, 6, 3791-3797.	4.1	61
75	Resorbable biomaterials as bone graft substitutes. Materials Today, 2010, 13, 24-30.	8.3	326
76	Thermal Treatment of Flame‣ynthesized Amorphous Tricalcium Phosphate Nanoparticles. Journal of the American Ceramic Society, 2010, 93, 3455-3463.	1.9	23
77	Synthetic Calcium Phosphate Ceramics for Treatment of Bone Fractures. Chimia, 2010, 64, 723.	0.3	24
78	Design of ceramic-based cements and putties for bone graft substitution. , 2010, 20, 1-12.		261
79	Can bioactivity be tested in vitro with SBF solution?. Biomaterials, 2009, 30, 2175-2179.	5.7	783
80	Silicon-substituted calcium phosphates – A critical view. Biomaterials, 2009, 30, 6403-6406.	5.7	256
81	A physical approach to modify the hydraulic reactivity of α-tricalcium phosphate powder. Acta Biomaterialia, 2009, 5, 3524-3535.	4.1	58
82	Thermal reactions of brushite cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 375-385.	1.6	59
83	Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 474-482.	1.6	103
84	Bone substitute: Transforming β-tricalcium phosphate porous scaffolds intoÂmonetite. Biomaterials, 2008, 29, 3400-3407.	5.7	50
85	Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomaterialia, 2008, 4, 1465-1471.	4.1	82
86	Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: An in vitro and in vivo study. Acta Biomaterialia, 2008, 4, 1904-1915.	4.1	291
87	Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Acta Biomaterialia, 2008, 4, 1688-1693.	4.1	22
88	Controlling the reactivity of calcium phosphate cements. Journal of Materials Chemistry, 2008, 18, 5669.	6.7	37
89	Effect of thermal treatments on the reactivity of nanosized tricalcium phosphate powders. Journal of Materials Chemistry, 2008, 18, 4460.	6.7	30

#	Article	IF	CITATIONS
91	Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1125-1142.	1.9	80
92	Letters. Spine, 2008, 33, 2839-2840.	1.0	4
93	Controlling the Reactivity of Calcium Phosphate Cements. Key Engineering Materials, 2007, 361-363, 295-298.	0.4	1
94	Preparation of an ultra fast binding cement from calcium silicate-based mixed oxide nanoparticles. Nanotechnology, 2007, 18, 395701.	1.3	8
95	Reactivity of calcium phosphate cements. Journal of Materials Chemistry, 2007, 17, 3980.	6.7	167
96	Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. Journal of Materials Chemistry, 2007, 17, 4072.	6.7	99
97	Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 400-407.	1.6	64
98	Nondestructive micro-computed tomography for biological imaging and quantification of scaffold–bone interaction in vivo. Biomaterials, 2007, 28, 2479-2490.	5.7	186
99	High-Viscosity Cement Significantly Enhances Uniformity of Cement Filling in Vertebroplasty: An Experimental Model and Study on Cement Leakage. Spine, 2006, 31, 2562-2568.	1.0	166
100	Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of α-tricalcium phosphate–water mixtures. Acta Biomaterialia, 2006, 2, 343-348.	4.1	45
101	In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials, 2006, 27, 5186-5198.	5.7	252
102	Conséquences biomécaniques de la vertébroplastie. Revue Du Rhumatisme (Edition Francaise), 2006, 73, 248-255.	0.0	0
103	Biomechanical impact of vertebroplasty. Joint Bone Spine, 2006, 73, 144-150.	0.8	69
104	Biomaterials, Surgical Implants, and Instruments. , 2006, , 96-111.		3
105	Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. , 2006, 12, 26-35.		76
106	Clinical Measurements of Cement Injection Pressure During Vertebroplasty. Spine, 2005, 30, E118-E122.	1.0	51
107	Effect of Vertebral Shell on Injection Pressure and Intravertebral Pressure in Vertebroplasty. Spine, 2005, 30, 68-74.	1.0	36
108	Rheological characterization of concentrated aqueous β-tricalcium phosphate suspensions: The effect of liquid-to-powder ratio, milling time, and additives. Acta Biomaterialia, 2005, 1, 357-363.	4.1	64

#	Article	IF	CITATIONS
109	Injectability of calcium phosphate pastes. Biomaterials, 2005, 26, 1553-1563.	5.7	360
110	Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials, 2005, 26, 4383-4394.	5.7	267
111	Synthesis and characterization of porous Î ² -tricalcium phosphate blocks. Biomaterials, 2005, 26, 6099-6105.	5.7	143
112	Correlating crystallinity and reactivity in an α-tricalcium phosphate. Biomaterials, 2005, 26, 2787-2794.	5.7	82
113	Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate—calcium sulphate dihydrate mixtures. Biomaterials, 2005, 26, 3395-3404.	5.7	82
114	Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials, 2005, 26, 6423-6429.	5.7	376
115	Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty – an experimental study in sheep. Journal of Cranio-Maxillo-Facial Surgery, 2005, 33, 37-44.	0.7	112
116	Modulating the Nanotopography of Apatites. Key Engineering Materials, 2004, 254-256, 895-898.	0.4	0
117	In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials, 2004, 25, 1439-1451.	5.7	321
118	New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. Biomaterials, 2004, 25, 741-749.	5.7	67
119	Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials, 2004, 25, 3569-3582.	5.7	124
120	Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials, 2003, 24, 2593-2603.	5.7	214
121	Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials, 2003, 24, 2721-2730.	5.7	178
122	Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials, 2003, 24, 3463-3474.	5.7	132
123	How to determine the permeability for cement infiltration of osteoporotic cancellous bone. Medical Engineering and Physics, 2003, 25, 283-288.	0.8	50
124	Biomechanical Explanation of Adjacent Fractures Following Vertebroplasty [letter]. Radiology, 2003, 229, 606-608.	3.6	81
125	Studies on the Effect of Particle Size and Copolymer Polydispersity on the Adsorption of a PEO/PPO/PEO Copolymer on PS Latex Particles. Macromolecules, 2002, 35, 6724-6731.	2.2	11
126	pH Variations of a Solution after Injecting Brushite Cements. Key Engineering Materials, 2001, 192-195, 813-816.	0.4	12

#	Article	IF	CITATIONS
127	Calcium Phosphate Emulsions: Possible Applications. Key Engineering Materials, 2001, 192-195, 765-768.	0.4	53
128	Physical and chemical aspects of calcium phosphates used in spinal surgery. European Spine Journal, 2001, 10, S114-S121.	1.0	159
129	Control of Gentamicin Release From a Calcium Phosphate Cement by Admixed Poly(acrylic acid). Journal of Pharmaceutical Sciences, 2000, 89, 1262-1270.	1.6	54
130	Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 2000, 31, D37-D47.	0.7	798
131	In vitro aging of a calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 2000, 11, 155-162.	1.7	46
132	Effect of several additives and their admixtures on the physico-chemical properties of a calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 2000, 11, 111-116.	1.7	85
133	Effect of Bioglass Granules on the Physico-Chemical Properties of Brushite Cements. Key Engineering Materials, 2000, 192-195, 809-812.	0.4	3
134	Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid). Journal of Pharmaceutical Sciences, 2000, 89, 1262-1270.	1.6	6
135	Gentamicin-Loaded Hydraulic Calcium Phosphate Bone Cement as Antibiotic Delivery System. Journal of Pharmaceutical Sciences, 1997, 86, 565-572.	1.6	141
136	Composition effects on the pH of a hydraulic calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 1997, 8, 675-681.	1.7	97
137	Kinetics of Dissolution of β-Tricalcium Phosphate. Journal of Colloid and Interface Science, 1997, 190, 37-48.	5.0	42
138	CONTROL OF THE SYNTHESIS OF α-TRICALCIUM ORTHOPHOSPHATE BY X-RAY DIFFRACTION AND SOLID-STATE ³¹ P MAGIC ANGLE SPINNING NMR. Phosphorus Research Bulletin, 1996, 6, 5-8.	0.1	0
139	Resorption of, and bone formation from, new ?-tricalcium phosphate-monocalcium phosphate cements: Anin vivo study. , 1996, 30, 193-200.		231
140	Synthesis, X-ray diffraction and solid-state 31P magic angle spinning NMR study of ?-tricalcium orthophosphate. Journal of Materials Science: Materials in Medicine, 1996, 7, 457-463.	1.7	36
141	Effects of Sulfate, Pyrophosphate, and Citrate Ions on the Physicochemical Properties of Cements Made of beta-Tricalcium Phosphate-Phosphoric Acid-Water Mixtures. Journal of the American Ceramic Society, 1996, 79, 1427-1434.	1.9	112
142	Phase Evolution of Thermally Treated Amorphous Tricalcium Phosphate Nanoparticles. Key Engineering Materials, 0, 396-398, 595-598.	0.4	11
143	Investigation of the Phase Separation Occurring during the Injection of β-Tricalcium Phosphate – Water – Glass Beads Pastes. Key Engineering Materials, 0, 493-494, 693-697.	0.4	3
144	Recrystallization of Amorphized α-TCP. Key Engineering Materials, 0, 493-494, 219-224.	0.4	0

#	Article	IF	CITATIONS
145	In Vitro Measurement of the Chemical Changes Occurring within Î'-Tricalcium Phosphate Bone Graft Substitutes. SSRN Electronic Journal, 0, , .	0.4	0
146	\hat{I}^2 -Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. SSRN Electronic Journal, O, , .	0.4	0