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17 Verification of a Cryptographic Primitive. ACM Transactions on Programming Languages and Systems,
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19 Verification of a cryptographic primitive: SHA-256 (abstract). , 2015, , . 3

20 Portable Software Fault Isolation. , 2014, , . 11

21 Verified Compilation for Shared-Memory C. Lecture Notes in Computer Science, 2014, , 107-127. 1.0 33

22 Mostly Sound Type System Improves a Foundational Program Verifier. Lecture Notes in Computer
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23 Verified heap theorem prover by paramodulation. , 2012, , . 5

24 A List-Machine Benchmark for Mechanized Metatheory. Journal of Automated Reasoning, 2012, 49,
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Notes in Computer Science, 2012, , 369-389. 1.0 19
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27 Local actions for a curry-style operational semantics. , 2011, , . 2
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1-29. 4.5 14

29 Verified Software Toolchain. Lecture Notes in Computer Science, 2011, , 1-17. 1.0 80

30 VeriSmall: Verified Smallfoot Shape Analysis. Lecture Notes in Computer Science, 2011, , 231-246. 1.0 11

31 Formal Verification of Coalescing Graph-Coloring Register Allocation. Lecture Notes in Computer
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32 A theory of indirection via approximation. ACM SIGPLAN Notices, 2010, 45, 171-184. 0.2 3

33 A theory of indirection via approximation. , 2010, , . 20

34 Semantic foundations for typed assembly languages. ACM Transactions on Programming Languages
and Systems, 2010, 32, 1-67. 1.7 29

35 Concurrent Separation Logic for Pipelined Parallelization. Lecture Notes in Computer Science, 2010, ,
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36 A Logical Mix of Approximation and Separation. Lecture Notes in Computer Science, 2010, , 439-454. 1.0 0



4

Andrew W Appel

# Article IF Citations

37 A Fresh Look at Separation Algebras and Share Accounting. Lecture Notes in Computer Science, 2009, ,
161-177. 1.0 86

38 Multimodal Separation Logic for Reasoning About Operational Semantics. Electronic Notes in
Theoretical Computer Science, 2008, 218, 5-20. 0.9 10

39 Oracle Semantics for Concurrent Separation Logic. , 2008, , 353-367. 55
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43 Separation Logic for Small-Step cminor. Lecture Notes in Computer Science, 2007, , 5-21. 1.0 36

44 A Compositional Logic for Control Flow. Lecture Notes in Computer Science, 2005, , 80-94. 1.0 34

45 Polymorphic lemmas and definitions in $lambda$Prolog and Twelf. Theory and Practice of Logic
Programming, 2004, 4, 1-39. 1.1 5

46 Real-time concurrent collection on stock multiprocessors. ACM SIGPLAN Notices, 2004, 39, 205-216. 0.2 54

47 Dependent types ensure partial correctness of theorem provers. Journal of Functional Programming,
2004, 14, 3-19. 0.5 15

48 Construction of a Semantic Model for a Typed Assembly Language. Lecture Notes in Computer Science,
2004, , 30-43. 1.0 10

49 A Trustworthy Proof Checker. Journal of Automated Reasoning, 2003, 31, 231-260. 1.1 21

50 Mechanisms for secure modular programming in Java. Software - Practice and Experience, 2003, 33,
461-480. 2.5 17

51 A provably sound TAL for back-end optimization. ACM SIGPLAN Notices, 2003, 38, 208-219. 0.2 5

52 A provably sound TAL for back-end optimization. , 2003, , . 23

53 Foundational proof checkers with small witnesses. , 2003, , . 31
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55 An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on
Programming Languages and Systems, 2001, 23, 657-683. 1.7 222

56 Type-preserving garbage collectors. ACM SIGPLAN Notices, 2001, 36, 166-178. 0.2 1

57 Optimal spilling for CISC machines with few registers. ACM SIGPLAN Notices, 2001, 36, 243-253. 0.2 14

58 Efficient Substitution in Hoare Logic Expressions. Electronic Notes in Theoretical Computer Science,
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59 Type-preserving garbage collectors. , 2001, , . 35

60 Efficient and safe-for-space closure conversion. ACM Transactions on Programming Languages and
Systems, 2000, 22, 129-161. 1.7 22

61 Viewpoint: Technological access control interferes with noninfringing scholarship. Communications
of the ACM, 2000, 43, 21-23. 3.3 2
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63 A semantic model of types and machine instructions for proof-carrying code. , 2000, , . 93

64 Hierarchical modularity. ACM Transactions on Programming Languages and Systems, 1999, 21, 813-847. 1.7 38

65 SSA is functional programming. ACM SIGPLAN Notices, 1998, 33, 17-20. 0.2 122
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67 Lambda-splitting. ACM SIGPLAN Notices, 1997, 32, 112-124. 0.2 0

68 Shrinking lambda expressions in linear time. Journal of Functional Programming, 1997, 7, 515-540. 0.5 39

69 Empirical and analytic study of stack versus heap cost for languages with closures. Journal of
Functional Programming, 1996, 6, 47-74. 0.5 36
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75 A type-based compiler for standard ML. ACM SIGPLAN Notices, 1995, 30, 116-129. 0.2 7

76 Cache performance of fast-allocating programs. , 1995, , . 18
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83 Separate compilation for Standard ML. ACM SIGPLAN Notices, 1994, 29, 13-23. 0.2 1
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86 A critique of Standard ML. Journal of Functional Programming, 1993, 3, 391-429. 0.5 15

87 Special Issue on ML. Journal of Functional Programming, 1992, 2, i-i. 0.5 0

88 Callee-save registers in continuation-passing style. Higher-Order and Symbolic Computation, 1992, 5,
191-221. 1.2 18
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92 Virtual memory primitives for user programs. Operating Systems Review (ACM), 1991, 25, 96-107. 1.5 0

93 Virtual memory primitives for user programs. , 1991, , . 160

94 Virtual memory primitives for user programs. ACM SIGPLAN Notices, 1991, 26, 96-107. 0.2 20

95 Standard ML of New Jersey. Lecture Notes in Computer Science, 1991, , 1-13. 1.0 111
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97 A runtime system. Higher-Order and Symbolic Computation, 1990, 3, 343-380. 1.2 45

98 An advisor for flexible working sets. , 1990, , . 29
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100 Simple generational garbage collection and fast allocation. Software - Practice and Experience, 1989,
19, 171-183. 2.5 234

101 Allocation without locking. Software - Practice and Experience, 1989, 19, 703-705. 2.5 6

102 Runtime tags aren't necessary. Higher-Order and Symbolic Computation, 1989, 2, 153-162. 1.2 55

103 Vectorized garbage collection. Journal of Supercomputing, 1989, 3, 151-160. 2.4 8

104 The world's fastest Scrabble program. Communications of the ACM, 1988, 31, 572-578. 3.3 47

105 Generalizations of the sethi-ullman algorithm for register allocation. Software - Practice and
Experience, 1987, 17, 417-421. 2.5 14

106 Garbage collection can be faster than stack allocation. Information Processing Letters, 1987, 25,
275-279. 0.4 109

107 Semantics-directed code generation. , 1985, , . 13

108 An Efficient Program for Many-Body Simulation. SIAM Journal on Scientific and Statistical Computing,
1985, 6, 85-103. 1.5 452
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