
Andrew W Appel

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/482741/publications.pdf

Version: 2024-02-01

109

papers

4,484

citations

24

h-index

293460

51

g-index

206121

116

all docs

116

docs citations

116

times ranked

1299

citing authors

Andrew W Appel

2

Article IF Citations

1 Coqâ€™s vibrant ecosystem for verification engineering (invited talk). , 2022, , . 3

2 Abstraction and subsumption in modular verification of C programs. Formal Methods in System
Design, 2021, 58, 322-345. 0.9 4

3 Compositional optimizations for CertiCoq. , 2021, 5, 1-30. 8

4 Deriving efficient program transformations from rewrite rules. , 2021, 5, 1-29. 2

5 Connecting Higher-Order Separation Logic to a First-Order Outside World. Lecture Notes in
Computer Science, 2020, , 428-455. 1.0 5

6 Verified sequential Malloc/Free. , 2020, , . 5

7 Closure conversion is safe for space. , 2019, 3, 1-29. 12

8 Abstraction and Subsumption in Modular Verification of C Programs. Lecture Notes in Computer
Science, 2019, , 573-590. 1.0 6

9 VST-Floyd: A Separation Logic Tool to Verify Correctness of C Programs. Journal of Automated
Reasoning, 2018, 61, 367-422. 1.1 56

10 A verified messaging system. , 2017, 1, 1-28. 17

11 Position paper: the science of deep specification. Philosophical Transactions Series A, Mathematical,
Physical, and Engineering Sciences, 2017, 375, 20160331. 1.6 21

12 Verified Correctness and Security of mbedTLS HMAC-DRBG. , 2017, , . 30

13 Shrink fast correctly!. , 2017, , . 6

14 Bringing Order to the Separation Logic Jungle. Lecture Notes in Computer Science, 2017, , 190-211. 1.0 10

15 Modular Verification for Computer Security. , 2016, , . 5

16 Compositional CompCert. ACM SIGPLAN Notices, 2015, 50, 275-287. 0.2 14

17 Verification of a Cryptographic Primitive. ACM Transactions on Programming Languages and Systems,
2015, 37, 1-31. 1.7 97

18 Compositional CompCert. , 2015, , . 51

3

Andrew W Appel

Article IF Citations

19 Verification of a cryptographic primitive: SHA-256 (abstract). , 2015, , . 3

20 Portable Software Fault Isolation. , 2014, , . 11

21 Verified Compilation for Shared-Memory C. Lecture Notes in Computer Science, 2014, , 107-127. 1.0 33

22 Mostly Sound Type System Improves a Foundational Program Verifier. Lecture Notes in Computer
Science, 2013, , 17-32. 1.0 3

23 Verified heap theorem prover by paramodulation. , 2012, , . 5

24 A List-Machine Benchmark for Mechanized Metatheory. Journal of Automated Reasoning, 2012, 49,
453-491. 1.1 5

25 A Certificate Infrastructure for Machine-Checked Proofs of Conditional Information Flow. Lecture
Notes in Computer Science, 2012, , 369-389. 1.0 19

26 Verified heap theorem prover by paramodulation. ACM SIGPLAN Notices, 2012, 47, 3-14. 0.2 5

27 Local actions for a curry-style operational semantics. , 2011, , . 2

28 Security Seals on Voting Machines. ACM Transactions on Information and System Security, 2011, 14,
1-29. 4.5 14

29 Verified Software Toolchain. Lecture Notes in Computer Science, 2011, , 1-17. 1.0 80

30 VeriSmall: Verified Smallfoot Shape Analysis. Lecture Notes in Computer Science, 2011, , 231-246. 1.0 11

31 Formal Verification of Coalescing Graph-Coloring Register Allocation. Lecture Notes in Computer
Science, 2010, , 145-164. 1.0 12

32 A theory of indirection via approximation. ACM SIGPLAN Notices, 2010, 45, 171-184. 0.2 3

33 A theory of indirection via approximation. , 2010, , . 20

34 Semantic foundations for typed assembly languages. ACM Transactions on Programming Languages
and Systems, 2010, 32, 1-67. 1.7 29

35 Concurrent Separation Logic for Pipelined Parallelization. Lecture Notes in Computer Science, 2010, ,
151-166. 1.0 11

36 A Logical Mix of Approximation and Separation. Lecture Notes in Computer Science, 2010, , 439-454. 1.0 0

4

Andrew W Appel

Article IF Citations

37 A Fresh Look at Separation Algebras and Share Accounting. Lecture Notes in Computer Science, 2009, ,
161-177. 1.0 86

38 Multimodal Separation Logic for Reasoning About Operational Semantics. Electronic Notes in
Theoretical Computer Science, 2008, 218, 5-20. 0.9 10

39 Oracle Semantics for Concurrent Separation Logic. , 2008, , 353-367. 55

40 A very modal model of a modern, major, general type system. ACM SIGPLAN Notices, 2007, 42, 109-122. 0.2 21

41 A very modal model of a modern, major, general type system. , 2007, , . 88

42 A List-machine Benchmark for Mechanized Metatheory. Electronic Notes in Theoretical Computer
Science, 2007, 174, 95-108. 0.9 4

43 Separation Logic for Small-Step cminor. Lecture Notes in Computer Science, 2007, , 5-21. 1.0 36

44 A Compositional Logic for Control Flow. Lecture Notes in Computer Science, 2005, , 80-94. 1.0 34

45 Polymorphic lemmas and definitions in $lambda$Prolog and Twelf. Theory and Practice of Logic
Programming, 2004, 4, 1-39. 1.1 5

46 Real-time concurrent collection on stock multiprocessors. ACM SIGPLAN Notices, 2004, 39, 205-216. 0.2 54

47 Dependent types ensure partial correctness of theorem provers. Journal of Functional Programming,
2004, 14, 3-19. 0.5 15

48 Construction of a Semantic Model for a Typed Assembly Language. Lecture Notes in Computer Science,
2004, , 30-43. 1.0 10

49 A Trustworthy Proof Checker. Journal of Automated Reasoning, 2003, 31, 231-260. 1.1 21

50 Mechanisms for secure modular programming in Java. Software - Practice and Experience, 2003, 33,
461-480. 2.5 17

51 A provably sound TAL for back-end optimization. ACM SIGPLAN Notices, 2003, 38, 208-219. 0.2 5

52 A provably sound TAL for back-end optimization. , 2003, , . 23

53 Foundational proof checkers with small witnesses. , 2003, , . 31

54 Creating and preserving locality of java applications at allocation and garbage collection times. ACM
SIGPLAN Notices, 2002, 37, 13-25. 0.2 6

5

Andrew W Appel

Article IF Citations

55 An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on
Programming Languages and Systems, 2001, 23, 657-683. 1.7 222

56 Type-preserving garbage collectors. ACM SIGPLAN Notices, 2001, 36, 166-178. 0.2 1

57 Optimal spilling for CISC machines with few registers. ACM SIGPLAN Notices, 2001, 36, 243-253. 0.2 14

58 Efficient Substitution in Hoare Logic Expressions. Electronic Notes in Theoretical Computer Science,
2001, 41, 35-49. 0.9 1

59 Type-preserving garbage collectors. , 2001, , . 35

60 Efficient and safe-for-space closure conversion. ACM Transactions on Programming Languages and
Systems, 2000, 22, 129-161. 1.7 22

61 Viewpoint: Technological access control interferes with noninfringing scholarship. Communications
of the ACM, 2000, 43, 21-23. 3.3 2

62 SAFKASI. ACM Transactions on Software Engineering and Methodology, 2000, 9, 341-378. 4.8 106

63 A semantic model of types and machine instructions for proof-carrying code. , 2000, , . 93

64 Hierarchical modularity. ACM Transactions on Programming Languages and Systems, 1999, 21, 813-847. 1.7 38

65 SSA is functional programming. ACM SIGPLAN Notices, 1998, 33, 17-20. 0.2 122

66 Lambda-splitting. , 1997, , . 10

67 Lambda-splitting. ACM SIGPLAN Notices, 1997, 32, 112-124. 0.2 0

68 Shrinking lambda expressions in linear time. Journal of Functional Programming, 1997, 7, 515-540. 0.5 39

69 Empirical and analytic study of stack versus heap cost for languages with closures. Journal of
Functional Programming, 1996, 6, 47-74. 0.5 36

70 0.2 3

71 Iterated register coalescing. ACM Transactions on Programming Languages and Systems, 1996, 18,
300-324. 1.7 197

72 Iterated register coalescing. , 1996, , . 17

6

Andrew W Appel

Article IF Citations

73 A Debugger for Standard ML. Journal of Functional Programming, 1995, 5, 155-200. 0.5 33

74 A type-based compiler for standard ML. , 1995, , . 61

75 A type-based compiler for standard ML. ACM SIGPLAN Notices, 1995, 30, 116-129. 0.2 7

76 Cache performance of fast-allocating programs. , 1995, , . 18

77 Separate compilation for Standard ML. , 1994, , . 20

78 Axiomatic bootstrapping. ACM Transactions on Programming Languages and Systems, 1994, 16, 1699-1718. 1.7 8

79 Space-efficient closure representations. , 1994, , . 64

80 Loop headers in ?-calculus or CPS. Higher-Order and Symbolic Computation, 1994, 7, 337-343. 1.2 9

81 Unrolling lists. ACM SIGPLAN Lisp Pointers, 1994, VII, 185-195. 0.1 6

82 Space-efficient closure representations. ACM SIGPLAN Lisp Pointers, 1994, VII, 150-161. 0.1 6

83 Separate compilation for Standard ML. ACM SIGPLAN Notices, 1994, 29, 13-23. 0.2 1

84 Smartest recompilation. , 1993, , . 41

85 Special Issue on ML. Journal of Functional Programming, 1993, 3, 389-389. 0.5 1

86 A critique of Standard ML. Journal of Functional Programming, 1993, 3, 391-429. 0.5 15

87 Special Issue on ML. Journal of Functional Programming, 1992, 2, i-i. 0.5 0

88 Callee-save registers in continuation-passing style. Higher-Order and Symbolic Computation, 1992, 5,
191-221. 1.2 18

89 Is POPL mathematics or science?. ACM SIGPLAN Notices, 1992, 27, 87-89. 0.2 2

90 Debuggable concurrency extensions for standard ML. ACM SIGPLAN Notices, 1991, 26, 120-131. 0.2 5

7

Andrew W Appel

Article IF Citations

91 Virtual memory primitives for user programs. Computer Architecture News, 1991, 19, 96-107. 2.5 1

92 Virtual memory primitives for user programs. Operating Systems Review (ACM), 1991, 25, 96-107. 1.5 0

93 Virtual memory primitives for user programs. , 1991, , . 160

94 Virtual memory primitives for user programs. ACM SIGPLAN Notices, 1991, 26, 96-107. 0.2 20

95 Standard ML of New Jersey. Lecture Notes in Computer Science, 1991, , 1-13. 1.0 111

96 An advisor for flexible working sets. Performance Evaluation Review, 1990, 18, 153-162. 0.4 0

97 A runtime system. Higher-Order and Symbolic Computation, 1990, 3, 343-380. 1.2 45

98 An advisor for flexible working sets. , 1990, , . 29

99 Debugging standard ML without reverse engineering. , 1990, , . 39

100 Simple generational garbage collection and fast allocation. Software - Practice and Experience, 1989,
19, 171-183. 2.5 234

101 Allocation without locking. Software - Practice and Experience, 1989, 19, 703-705. 2.5 6

102 Runtime tags aren't necessary. Higher-Order and Symbolic Computation, 1989, 2, 153-162. 1.2 55

103 Vectorized garbage collection. Journal of Supercomputing, 1989, 3, 151-160. 2.4 8

104 The world's fastest Scrabble program. Communications of the ACM, 1988, 31, 572-578. 3.3 47

105 Generalizations of the sethi-ullman algorithm for register allocation. Software - Practice and
Experience, 1987, 17, 417-421. 2.5 14

106 Garbage collection can be faster than stack allocation. Information Processing Letters, 1987, 25,
275-279. 0.4 109

107 Semantics-directed code generation. , 1985, , . 13

108 An Efficient Program for Many-Body Simulation. SIAM Journal on Scientific and Statistical Computing,
1985, 6, 85-103. 1.5 452

8

Andrew W Appel

Article IF Citations

109 Hoare logic. , 0, , 10-15. 6

