Susana I SÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4827247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Four decades of chemotherapy-induced cognitive dysfunction: comprehensive review of clinical, animal and in vitro studies, and insights of key initiating events. Archives of Toxicology, 2022, 96, 11-78.	4.2	9
2	Early unhealthy eating habits underlie morpho-functional changes in the liver and adipose tissue in male rats. Histochemistry and Cell Biology, 2022, , 1.	1.7	3
3	Chemobrain: mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Archives of Toxicology, 2022, 96, 1767-1782.	4.2	6
4	Effects of ovariectomy on inputs from the medial preoptic area to the ventromedial nucleus of the hypothalamus of young adult rats. Journal of Anatomy, 2021, 238, 467-479.	1.5	4
5	Effects of ovariectomy on the inputs from the medial nucleus of the amygdala to the ventromedial nucleus of the hypothalamus in young adult rats. Neuroscience Letters, 2021, 746, 135657.	2.1	0
6	Gut Microbiome Composition and Metabolic Status Are Differently Affected by Early Exposure to Unhealthy Diets in a Rat Model. Nutrients, 2021, 13, 3236.	4.1	9
7	Behavioral and brain morphological analysis of non-inflammatory and inflammatory rat models of preterm brain injury. Neurobiology of Learning and Memory, 2021, 185, 107540.	1.9	2
8	Hepatic effects of longâ€ŧerm tamoxifen administration to cycling female rats. Journal of Biochemical and Molecular Toxicology, 2019, 33, e22293.	3.0	4
9	Uterine histopathological changes induced by acute administration of tamoxifen and its modulation by sex steroid hormones. Toxicology and Applied Pharmacology, 2019, 363, 88-97.	2.8	6
10	Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior. Neurobiology of Disease, 2018, 109, 33-43.	4.4	5
11	Evaluation of progressive hepatic histopathology in long-term tamoxifen therapy. Pathology Research and Practice, 2018, 214, 2115-2120.	2.3	10
12	The integrity of the nucleus of the lateral olfactory tract is essential for the normal functioning of the olfactory system. Brain Structure and Function, 2017, 222, 3615-3637.	2.3	21
13	Dynamics of progesterone and estrogen receptor alpha in the ventromedial hypothalamus. Journal of Endocrinology, 2017, 233, 197-207.	2.6	13
14	The endocannabinoid system expression in the female reproductive tract is modulated by estrogen. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 40-47.	2.5	35
15	Regulation of NPY and α-MSH expression by estradiol in the arcuate nucleus of Wistar female rats: a stereological study. Neurological Research, 2016, 38, 740-747.	1.3	16
16	Changes in the female arcuate nucleus morphology and neurochemistry after chronic ethanol consumption and long-term withdrawal. Journal of Chemical Neuroanatomy, 2016, 77, 30-40.	2.1	3
17	Induction and subcellular redistribution of progesterone receptor A and B by tamoxifen in the hypothalamic ventromedial neurons of young adult female Wistar rats. Molecular and Cellular Endocrinology, 2016, 420, 1-10.	3.2	7
18	Estrogen receptors \hat{I}_{\pm} and \hat{I}^2 have different roles in the induction and trafficking of progesterone receptors in hypothalamic ventromedial neurons. FEBS Journal, 2015, 282, 1126-1136.	4.7	14

Susana I SÃi

#	Article	IF	CITATIONS
19	Effects of gonadal steroids and of estrogen receptor agonists on the expression of estrogen receptor alpha in the medial preoptic nucleus of female rats. Neuroscience, 2015, 310, 63-72.	2.3	11
20	Role of plasma membrane estrogen receptors in mediating the estrogen induction of progesterone receptors in hypothalamic ventromedial neurons. Journal of Comparative Neurology, 2014, 522, 298-307.	1.6	12
21	Effects of sex steroids and estrogen receptor agonists on the expression of estrogen receptor alpha in the principal division of the bed nucleus of the stria terminalis of female rats. Brain Research, 2014, 1582, 99-106.	2.2	11
22	Role of estrogen receptor $\hat{I}\pm$ and \hat{I}^2 in the induction of progesterone receptors in hypothalamic ventromedial neurons. Neuroscience, 2013, 238, 159-167.	2.3	23
23	Sex Steroid Hormones Regulate the Expression of Growth-associated Protein 43, Microtubule-associated Protein 2, Synapsin 1 and Actin in the Ventromedial Nucleus of the Hypothalamus. Journal of Molecular Neuroscience, 2012, 46, 622-630.	2.3	2
24	Role of neural afferents as mediators of estrogen effects on the hypothalamic ventromedial nucleus. Brain Research, 2010, 1366, 60-70.	2.2	14
25	Effects of estrogens and progesterone on the synaptic organization of the hypothalamic ventromedial nucleus. Neuroscience, 2009, 162, 307-316.	2.3	26
26	Estrogen modulates the sexually dimorphic synaptic connectivity of the ventromedial nucleus. Journal of Comparative Neurology, 2005, 484, 68-79.	1.6	27
27	Neuronal organelles and nuclear pores of hypothalamic ventromedial neurons are sexually dimorphic and change during the estrus cycle in the rat. Neuroscience, 2005, 133, 919-924.	2.3	16
28	Timed hypocaloric food restriction alters the synthesis and expression of vasopressin and vasoactive intestinal peptide in the suprachiasmatic nucleus. Brain Research, 2004, 1022, 226-233.	2.2	15