Yogambha Ramaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4826901/publications.pdf

Version: 2024-02-01

36 papers

2,526 citations

257429 24 h-index 345203 36 g-index

36 all docs

36 docs citations

36 times ranked 2685 citing authors

#	Article	IF	CITATIONS
1	The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials, 2010, 31, 3175-3184.	11.4	261
2	The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials, 2007, 28, 3171-3181.	11.4	209
3	Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering. Acta Biomaterialia, 2010, 6, 2237-2245.	8.3	207
4	The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials, 2009, 30, 2199-2208.	11.4	177
5	Biological response of human bone cells to zinc-modified Ca–Si-based ceramics. Acta Biomaterialia, 2008, 4, 1487-1497.	8.3	168
6	Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous and Mesoporous Materials, 2008, 112, 494-503.	4.4	166
7	The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29, 4392-4402.	11.4	158
8	Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(d,l-lactic) Tj ETQq0 0 0	rgBT ₃ /Ove	rlock 10 Tf 50
9	Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. Journal of Biomedical Materials Research - Part A, 2008, 86A, 402-410.	4.0	99
10	Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. Advanced Materials, 2020, 32, e1904511.	21.0	97
11	Novel sphene coatings on Ti–6Al–4V for orthopedic implants using sol–gel method. Acta Biomaterialia, 2008, 4, 569-576.	8.3	90
12	Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Applied Materials & Emp; Interfaces, 2020, 12, 18395-18406.	8.0	78
13	S100A8 and S100A9 in experimental osteoarthritis. Arthritis Research and Therapy, 2010, 12, R16.	3.5	72
14	Plasma-sprayed CaTiSiO ₅ ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. Journal of the Royal Society Interface, 2009, 6, 159-168.	3.4	71
15	The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn–Ca–Si system ceramics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 346-353.	3.4	70
16	Orthopedic coating materials: considerations and applications. Expert Review of Medical Devices, 2009, 6, 423-430.	2.8	46
17	Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)–Tyramine Hydrogels. Macromolecular Bioscience, 2015, 15, 1423-1432.	4.1	43
18	Sphene ceramics for orthopedic coating applications: An in vitro and in vivo study. Acta Biomaterialia, 2009, 5, 3192-3204.	8.3	38

#	Article	IF	Citations
19	Nature-inspired topographies on hydroxyapatite surfaces regulate stem cells behaviour. Bioactive Materials, 2021, 6, 1107-1117.	15.6	35
20	Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy?. Cancers, 2020, 12, 1341.	3.7	34
21	Emulsion strategies in the microencapsulation of cells: Pathways to thin coherent membranes. Biotechnology and Bioengineering, 2005, 92, 45-53.	3.3	29
22	Bioceramics composition modulate resorption of human osteoclasts. Journal of Materials Science: Materials in Medicine, 2005, 16, 1199-1205.	3.6	29
23	Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomaterials Science, 2020, 8, 5005-5019.	5.4	27
24	Novel injectable strontium-hardystonite phosphate cement for cancellous bone filling applications. Materials Science and Engineering C, 2019, 97, 103-115.	7.3	26
25	High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomaterials Science and Engineering, 2020, 6, 1887-1898.	5.2	25
26	Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188418.	7.4	21
27	Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Communications Biology, 2021, 4, 1038.	4.4	18
28	Reprogramming of human fibroblasts into osteoblasts by insulin-like growth factor-binding protein 7. Stem Cells Translational Medicine, 2020, 9, 403-415.	3.3	17
29	Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications. Materials, 2022, 15, 2111.	2.9	13
30	Baghdadite Ceramics Prevent Senescence in Human Osteoblasts and Promote Bone Regeneration in Aged Rats. ACS Biomaterials Science and Engineering, 2020, 6, 6874-6885.	5.2	10
31	Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells, 2021, 10, 593.	4.1	8
32	Stereolithographic Visible-Light Printing of Poly(<scp> </scp> -glutamic acid) Hydrogel Scaffolds. ACS Biomaterials Science and Engineering, 2022, 8, 1115-1131.	5.2	8
33	Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. Nanoscale Advances, 2021, 3, 4052-4061.	4.6	7
34	Evolution of stellated gold nanoparticles: New conceptual insights into controlling the surface processes. Nano Research, 2022, 15, 1260-1268.	10.4	4
35	Improving the Sensitivity of SPR Sensors with Au–Ag alloys and 2D Materials — a Simulationâ€Based Approach. Advanced Theory and Simulations, 2021, 4, 2100292.	2.8	4
36	In-Depth Conceptual Study of an Enhanced Plasmonic Sensing System Using Antireflective Coatings and Perovskites for the Detection of Infectious Viral Antigens. ACS Applied Electronic Materials, 2022, 4, 1732-1740.	4.3	4