José L Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4826599/publications.pdf

Version: 2024-02-01

89 papers

5,054 citations

30 h-index 91712 69 g-index

95 all docs 95 docs citations 95 times ranked 6061 citing authors

#	Article	IF	CITATIONS
1	TNFR2 blockade of regulatory T cells unleashes an antitumor immune response after hematopoietic stem-cell transplantation. , 2022, 10, e003508.		10
2	Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Scientific Reports, 2022, 12, 7140.	1.6	45
3	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by Suv39h1 in melanomas. Nature Communications, 2022, 13 , .	5.8	11
4	Viral genomic, metagenomic and human transcriptomic characterization and prediction of the clinical forms of COVID-19. PLoS Pathogens, 2021, 17, e1009416.	2.1	30
5	Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology, 2021, 32, 322001.	1.3	17
6	Nucleolin Targeting by N6L Inhibits Wnt/ \hat{l}^2 -Catenin Pathway Activation in Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 2986.	1.7	2
7	What role for AHR activation in IL4I1-mediated immunosuppression ?. Oncolmmunology, 2021, 10, 1924500.	2.1	9
8	The TNF- \hat{l}_{\pm} /TNFR2 Pathway: Targeting a Brake to Release the Anti-tumor Immune Response. Frontiers in Cell and Developmental Biology, 2021, 9, 725473.	1.8	21
9	IL4I1 Accelerates the Expansion of Effector CD8+ T Cells at the Expense of Memory Precursors by Increasing the Threshold of T-Cell Activation. Frontiers in Immunology, 2020, 11, 600012.	2.2	10
10	The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Communication and Signaling, 2020, 18, 94.	2.7	60
11	Transient antibody targeting of CD45RC inhibits the development of graft-versus-host disease. Blood Advances, 2020, 4, 2501-2515.	2.5	12
12	Phenotypic and Transcriptomic Lymphocytes Changes in Allograft Recipients After Intravenous Immunoglobulin Therapy in Kidney Transplant Recipients. Frontiers in Immunology, 2020, 11, 34.	2.2	0
13	TRANSIENT ANTIBODY TARGETING OF CD45RC TO PREVENT THE DEVELOPMENT OF ACUTE GRAFT VERSUS HOST DISEASES. Transplantation, 2020, 104, S96-S96.	0.5	O
14	Human Apoptotic Cells, Generated by Extracorporeal Photopheresis, Modulate Allogeneic Immune Response. Frontiers in Immunology, 2019, 10, 2908.	2.2	10
15	Control of Humoral Response in Renal Transplantation by Belatacept Depends on a Direct Effect on B Cells and Impaired T Follicular Helper-B Cell Crosstalk. Journal of the American Society of Nephrology: JASN, 2018, 29, 1049-1062.	3.0	78
16	TNFR2: The new Treg switch?. Oncolmmunology, 2018, 7, e1373236.	2.1	18
17	Systemic <scp>IL</scp> â€2/antiâ€ <scp>IL</scp> â€2Ab complex combined with sublingual immunotherapy suppresses experimental food allergy in mice through induction of mucosal regulatory T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 885-895.	2.7	33
18	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.4	29

#	Article	IF	Citations
19	Rituximab and Fibrillary Glomerulonephritis: Interest of B Cell Reconstitution Monitoring. Journal of Clinical Medicine, 2018, 7, 430.	1.0	9
20	Induction of CD4+CD25+FOXP3+ regulatory T cells by mesenchymal stem cells is associated with modulation of ubiquitination factors and TSDR demethylation. Stem Cell Research and Therapy, 2018, 9, 273.	2.4	31
21	Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graft-versus-Host Disease. Frontiers in Immunology, 2018, 9, 10.	2.2	52
22	Tumor Necrosis Factor \hat{l}_{\pm} and Regulatory T Cells in Oncoimmunology. Frontiers in Immunology, 2018, 9, 444.	2.2	139
23	An Oxygenated and Transportable Machine Perfusion System Fully Rescues Liver Grafts Exposed to Lethal Ischemic Damage in a Pig Model of DCD Liver Transplantation. Transplantation, 2017, 101, e205-e213.	0.5	38
24	Intravenous immunoglobulin therapy in kidney transplant recipients with de novo DSA: Results of an observational study. PLoS ONE, 2017, 12, e0178572.	1.1	14
25	Delayed and short course of rapamycin prevents organ rejection after allogeneic liver transplantation in rats. World Journal of Gastroenterology, 2017, 23, 6962-6972.	1.4	18
26	Induction of Hematopoietic Microchimerism by Gene-Modified BMT Elicits Antigen-Specific B and T Cell Unresponsiveness toward Gene Therapy Products. Frontiers in Immunology, 2016, 7, 360.	2.2	1
27	Antiâ€ <scp>HLA</scp> sensitization after kidney allograft nephrectomy: changes one year postâ€surgery and beneficial effect of intravenous immunoglobulin. Clinical Transplantation, 2016, 30, 731-740.	0.8	10
28	Transcriptomic Signature of the CD. American Journal of Transplantation, 2016, 16, 3430-3442.	2.6	27
29	Control of GVHD by regulatory T cells depends on TNF produced by T cells and TNFR2 expressed by regulatory T cells. Blood, 2016, 128, 1651-1659.	0.6	109
30	Loss of immune tolerance to IL-2 in type 1 diabetes. Nature Communications, 2016, 7, 13027.	5.8	28
31	Generation of Human Alloantigen-Specific Regulatory T Cells under Good Manufacturing Practice-Compliant Conditions for Cell Therapy. Cell Transplantation, 2015, 24, 2527-2540.	1.2	24
32	Th-17 Alloimmune Responses in Renal Allograft Biopsies From Recipients of Kidney Transplants Using Extended Criteria Donors During Acute T Cell–Mediated Rejection. American Journal of Transplantation, 2015, 15, 2718-2725.	2.6	21
33	Immunoendocrine dysbalance during uncontrolled T. cruzi infection is associated with the acquisition of a Th-1-like phenotype by Foxp3+ T cells. Brain, Behavior, and Immunity, 2015, 45, 219-232.	2.0	32
34	P0004 : The transportable machine perfusion airdrive \hat{A}° , A novel approach to safely expand the donor pool for liver transplantation. Journal of Hepatology, 2015, 62, S292.	1.8	0
35	Administration of Low Doses of IL-2 Combined to Rapamycin Promotes Allogeneic Skin Graft Survival in Mice. American Journal of Transplantation, 2014, 14, 2874-2882.	2.6	37
36	Searching for Factors to Improve Regulatory T Cell Therapy in Organ Transplantation. American Journal of Transplantation, 2014, 14, 2430-2431.	2.6	1

#	Article	IF	Citations
37	Kidney Transplant Recipients Treated With Belatacept Exhibit Increased Na \tilde{A} -ve and Transitional B Cells. American Journal of Transplantation, 2014, 14, 1173-1182.	2.6	50
38	Potential limitations of IL-2 administration for the treatment of experimental acute graft-versus-host disease. Immunology Letters, 2014, 162, 173-184.	1.1	28
39	Partial dysfunction of Treg activation in sickle cell disease. American Journal of Hematology, 2014, 89, 261-266.	2.0	36
40	Regulatory <scp>T</scp> â€cell depletion in donor lymphocyte infusions for haematological malignancies: longâ€term outcomes from a prospective study. British Journal of Haematology, 2014, 166, 452-455.	1.2	5
41	Lymphodepletion followed by infusion of suicide gene-transduced donor lymphocytes to safely enhance their antitumor effect: a phase I/II study. Leukemia, 2014, 28, 2406-2410.	3.3	16
42	In vivo activation of transferred regulatory T cells specific for thirdâ€party exogenous antigen controls GVH disease in mice. European Journal of Immunology, 2013, 43, 2263-2272.	1.6	16
43	Lymphodepletion Followed By Suicide-Gene-Transduced Donor Lymphocyte Infusion: A Strategy To Safely Enhance The Graft-Versus-Tumor Effect. Blood, 2013, 122, 153-153.	0.6	0
44	Depletion of T regulatory cells through selection of CD127-positive cells results in a population enriched in memory T cells: implications for anti-tumor cell therapy. Haematologica, 2012, 97, 1678-1685.	1.7	13
45	Regulatory T Cell Content in the Bone Marrow Graft Does Not Predict the Occurrence of Acute GVHD. Biology of Blood and Marrow Transplantation, 2011, 17, 265-269.	2.0	24
46	Intrarenal IFN- \hat{I}^3 mRNA Expression Differentiates Clinical and Subclinical Glomerulitis in Renal Transplant Recipients. Transplantation, 2011, 92, 170-175.	0.5	7
47	Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood, 2011, 117, 2975-2983.	0.6	52
48	T-cell phenotype in protocol renal biopsy from transplant recipients treated with belatacept-mediated co-stimulatory blockade. Nephrology Dialysis Transplantation, 2011, 26, 1087-1093.	0.4	34
49	Antigen quality determines the efficiency of antitumor immune responses generated in the absence of regulatory T cells. Cancer Gene Therapy, 2010, 17, 645-654.	2.2	12
50	CD4 ⁺ CD25 ⁺ Regulatory T Cell Depletion Improves the Graft-Versus-Tumor Effect of Donor Lymphocytes After Allogeneic Hematopoietic Stem Cell Transplantation. Science Translational Medicine, 2010, 2, 41ra52.	5.8	83
51	Clinical grade preparation of human natural regulatory Tâ€cells encoding the thymidine kinase suicide gene as a safety gene: authors' reponse. Journal of Gene Medicine, 2009, 11, 737-738.	1.4	1
52	A Role for Mesenchymal Stem Cells in the Control of Graft-Versus-Host Disease. Transplantation, 2009, 87, S53-S54.	0.5	8
53	Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. Journal of Clinical Investigation, 2009, 119, 2648-62.	3.9	101
54	Clinicalâ€grade preparation of human natural regulatory Tâ€cells encoding the thymidine kinase suicide gene as a safety gene. Journal of Gene Medicine, 2008, 10, 834-846.	1.4	19

#	Article	IF	CITATIONS
55	Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood, 2008, 111, 715-722.	0.6	252
56	Searching for factors to improve the antileukemic effect of donor lymphocyte infusion. Blood, 2008, 111, 5256-5256.	0.6	1
57	Donor Regulatory T Cells Identified by FoxP3 Expression but Also by the Membranous CD4+CD127low/neg Phenotype Influence Graft-versus-tumor Effect After Donor Lymphocyte Infusion. Journal of Immunotherapy, 2008, 31, 806-811.	1.2	16
58	Natural regulatory T cells control the development of atherosclerosis in mice. Nature Medicine, 2006, 12, 178-180.	15.2	936
59	The role of CD4+CD25hi regulatory T cells in the physiopathogeny of graft-versus-host disease. Current Opinion in Immunology, 2006, 18, 580-585.	2.4	62
60	Regulatory T cells in graft-versus-host disease. Seminars in Immunopathology, 2006, 28, 25-29.	4.0	10
61	CD4CD25 regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunology Letters, 2006, 102, 106-109.	1.1	140
62	Therapeutic potential of self-antigen-specific CD4+CD25+ regulatory T cells selectedin vitro from a polyclonal repertoire. European Journal of Immunology, 2006, 36, 817-827.	1.6	45
63	The Proatherogenic Role of T Cells Requires Cell Division and Is Dependent on the Stage of the Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 353-358.	1.1	23
64	Ex Vivo-Expanded CD4+CD25+ Immunoregulatory T Cells Prevent Graft-versus-Host-Disease by Inhibiting Activation/Differentiation of Pathogenic T Cells. Journal of Immunology, 2006, 176, 1266-1273.	0.4	127
65	Bone Marrow Mesenchymal Stem Cells Suppress Lymphocyte Proliferation In Vitro but Fail to Prevent Graft-versus-Host Disease in Mice. Journal of Immunology, 2006, 176, 7761-7767.	0.4	348
66	Regulatory and Effector T Cell Activation Levels Are Prime Determinants of In Vivo Immune Regulation. Journal of Immunology, 2006, 177, 2167-2174.	0.4	70
67	Therapeutic potential of CD4+ CD25+ regulatory T cells in allogeneic transplantation. Cytotherapy, 2005, 7, 166-170.	0.3	22
68	Ex vivo selection of recipient-type alloantigen-specific CD4+CD25+ immunoregulatory T cells for the control of graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation Transplantation, 2004, 77, S32-S34.	0.5	22
69	Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. Journal of Clinical Investigation, 2003, 112, 1688-1696.	3.9	422
70	Human CD4 Expression at the Late Single-Positive Stage of Thymic Development Supports T Cell Maturation and Peripheral Export in CD4-Deficient Mice. Journal of Immunology, 2002, 169, 4347-4353.	0.4	1
71	Effect of combined cytostatic cyclosporin A and cytolytic suicide gene therapy on the prevention of experimental graft-versus-host disease. Gene Therapy, 2002, 9, 201-207.	2.3	7
72	CD4+CD25+ Immunoregulatory T Cells. Journal of Experimental Medicine, 2002, 196, 401-406.	4.2	643

#	Article	IF	Citations
73	Graft-versus-leukemia effect after suicide-gene–mediated control of graft-versus-host disease. Blood, 2002, 100, 2020-2025.	0.6	29
74	Division rate and phenotypic differences discriminate alloreactive and nonalloreactive T cells transferred in lethally irradiated mice. Blood, 2001, 98, 3156-3158.	0.6	46
7 5	Suicide gene therapy of graft-versus-host disease: immune reconstitution with transplanted mature T cells. Blood, 2001, 98, 2071-2076.	0.6	25
76	Transient control of a virus-induced immunopathology by genetic immunosuppression. Gene Therapy, 2000, 7, 1536-1542.	2.3	5
77	T-Cell Suicide Gene Therapy for Organ Transplantation: Induction of Long-Lasting Tolerance to Allogeneic Heart without Generalized Immunosuppression. Molecular Therapy, 2000, 2, 596-601.	3.7	11
78	Preservation of Graft-versus-Infection Effects after Suicide Gene Therapy for Prevention of Graft-versus-Host Disease. Human Gene Therapy, 2000, 11, 2473-2481.	1.4	18
79	GANCICLOVIR-SENSITIVE ACUTE GRAFT-VERSUS-HOST DISEASE IN MICE RECEIVING HERPES SIMPLEX VIRUS-THYMIDINE KINASE???EXPRESSING DONOR T CELLS IN A BONE MARROW TRANSPLANTATION SETTING1. Transplantation, 2000, 69, 503-508.	0.5	29
80	PROLONGED ALLOGRAFT SURVIVAL THROUGH CONDITIONAL AND SPECIFIC ABLATION OF ALLOREACTIVE T CELLS EXPRESSING A SUICIDE GENE1. Transplantation, 2000, 69, 2154-2161.	0.5	17
81	Would suicide gene therapy solve the â€T-cell dilemma' of allogeneic bone marrow transplantation?. Trends in Immunology, 1999, 20, 172-176.	7.5	35
82	Immunological Defects after Suicide Gene Therapy of Experimental Graft-versus-Host Disease. Human Gene Therapy, 1999, 10, 2701-2707.	1.4	14
83	Suicide Gene-Mediated Modulation of Graft-Versus-Host Disease. Leukemia and Lymphoma, 1999, 34, 473-480.	0.6	26
84	Fertile homozygous transgenic mice expressing a functional truncated herpes simplex thymidine kinase delta TK gene. Transgenic Research, 1998, 7, 321-330.	1.3	32
85	Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis. Molecular Reproduction and Development, 1998, 50, 35-44.	1.0	7
86	Deletional and mutational analyses of the human CD4 gene promoter: characterization of a minimal tissue-specific promoter. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1442, 109-119.	2.4	6
87	Prevention of Graft-Versus-Host Disease in Mice Using a Suicide Gene Expressed in T Lymphocytes. Blood, 1997, 89, 4636-4645.	0.6	85
88	Three populations of mouse lymph node dendritic cells with different origins and dynamics. Immunology Letters, 1997, 56, 202.	1.1	25
89	Transgenic mouse models to analyze the consequences of a dysregulated expression of major histocompatibility complex (MHC) molecules on fetal development and survival. Biology of the Cell, 1995, 84, 117-117.	0.7	0