
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4826589/publications.pdf Version: 2024-02-01

ANCEL PLAZA

#	Article	IF	CITATIONS
1	Similarity classes generated by the 8T-LE partition applied to trirectangular tetrahedra. Journal of Computational and Applied Mathematics, 2022, 409, 114150.	2.0	0
2	106.07 A function-based proof of the harmonic mean â^' geometric mean â^' arithmetic mean inequalities. Mathematical Gazette, 2022, 106, 130-131.	0.0	1
3	106.24 Proof without words: a Riemann sum. Mathematical Gazette, 2022, 106, 331-331.	0.0	0
4	Exponential Inequalities and Corollaries. American Mathematical Monthly, 2021, 128, 162-162.	0.3	0
5	diverges while converges. Mathematical Gazette, 2021, 105, 161-162.	0.0	0
6	HM-LM-AM Inequalities. Mathematics Magazine, 2021, 94, 148-148.	0.1	0
7	A mechanically-based proof of the arithmetic mean harmonic mean inequality. International Journal of Mathematical Education in Science and Technology, 2020, , 1-3.	1.4	0
8	Half Row Sums in Pascal's Triangle. Mathematics Magazine, 2020, 93, 308-308.	0.1	0
9	104.14 More on zero-over-zero limits of special type. Mathematical Gazette, 2020, 104, 310-313.	0.0	0
10	104.22 Proof without Words: Minimum perimeter of an inscribed quadrangle to a square. Mathematical Gazette, 2020, 104, 338-339.	0.0	0
11	The 8T-LE partition applied to the obtuse triangulations of the 3D-cube. Mathematics and Computers in Simulation, 2020, 176, 254-265.	4.4	3
12	Harmonic, Logarithmic, and Arithmetic Means and Corollaries. American Mathematical Monthly, 2020, 127, 427-427.	0.3	0
13	Hamiltonian triangular refinements and space-filling curves. Journal of Computational and Applied Mathematics, 2019, 346, 18-25.	2.0	1
14	kth Power of a Partial Sum. American Mathematical Monthly, 2019, 126, 467-467.	0.3	1
15	Proof Without Words: The Square of a Sum. Mathematics Magazine, 2019, 92, 17-17.	0.1	1
16	On Zlámal Minimum Angle Condition for the Longest-Edge n-Section Algorithm with n ≥ 4. Lecture Notes in Computational Science and Engineering, 2019, , 737-742.	0.3	0
17	Proof Without Words: An Alternating Geometric Series. College Mathematics Journal, 2018, 49, 200-200.	0.1	0
18	Proof Without Words: Three Arctangent Identities. Mathematics Magazine, 2018, 91, 51-51.	0.1	0

#	Article	IF	CITATIONS
19	Proof Without Words: Tangent Plus Cotangent is Greater or Equal Than 2. Mathematics Magazine, 2018, 91, 363-363.	0.1	0
20	102.42 Proof without Words: An alternating geometrical series. Mathematical Gazette, 2018, 102, 504-505.	0.0	0
21	The Generalized Harmonic Series Diverges by the AM-GM Inequality. Mathematics Magazine, 2018, 91, 217-217.	0.1	0
22	Proof Without Words: The Triangle with Maximum Area for a Given Base and Perimeter. College Mathematics Journal, 2017, 48, 51-51.	0.1	0
23	Proof Without Words: Sum of a Row in Pascal's Triangle. College Mathematics Journal, 2017, 48, 188-188.	0.1	0
24	Proof Without Words: Arctangent of Two and the Golden Ratio. Mathematics Magazine, 2017, 90, 179-179.	0.1	3
25	Proof Without Words: Partial Column Sums in Pascal's Triangle. Mathematics Magazine, 2017, 90, 117-118.	0.1	0
26	Proof Without Words: A Pascal-Like Triangle With Pell Number Row Sums. College Mathematics Journal, 2017, 48, 346-346.	0.1	0
27	Proof Without Words: Arithmetic Mean of Two Means. College Mathematics Journal, 2016, 47, 125-125.	0.1	0
28	Proof Without Words: Limit of a Recursive Arithmetic Mean. Mathematics Magazine, 2016, 89, 189-189.	0.1	0
29	Proof Without Words: Limit of a Recursive Root Mean Square. Mathematics Magazine, 2016, 89, 177-178.	0.1	0
30	100.38 Proof without words: sum of a numerical series by telescoping. Mathematical Gazette, 2016, 100, 523-523.	0.0	0
31	100.39 An olympiad mathematical problem, proof without words and generalisation. Mathematical Gazette, 2016, 100, 524-525.	0.0	0
32	Proof Without Words: Alternating Row Sums in Pascal's Triangle. Mathematics Magazine, 2016, 89, 358-358.	0.1	0
33	Proof Without Words: Sum of Triangular Numbers. Mathematics Magazine, 2016, 89, 36-37.	0.1	1
34	100.12 Visual proof of the limit of f-mean recurrence sequences. Mathematical Gazette, 2016, 100, 139-141.	0.0	1
35	Proof Without Words: The Parallelogram With Maximum Perimeter for Given Diagonals Is the Rhombus. Mathematics Magazine, 2016, 89, 251-251.	0.1	0
36	Proof Without Words: Alternating Row Sums in Pascal's Triangle. Mathematics Magazine, 2016, 89, 281-281.	0.1	0

#	Article	IF	CITATIONS
37	Longest-edge <mml:math <br="" altimg="si104.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>n</mml:mi></mml:math> -section algorithms: Properties and open problems. Journal of Computational and Applied Mathematics, 2016, 293, 139-146.	2.0	10
38	On Numerical Regularity of Trisection-Based Algorithms in 3D. Springer Proceedings in Mathematics and Statistics, 2016, , 371-384.	0.2	0
39	The Parallelogram with Maximum Perimeter for Given Diagonals Is the Rhombus—A Proof Without Words and a Corollary. Mathematics Magazine, 2015, 88, 360-361.	0.1	1
40	On the maximum angle condition for the conforming longest-edge n-section algorithm for large values of n. Computer Aided Geometric Design, 2015, 32, 69-73.	1.2	2
41	Proof Without Words: Limit of a Recursive Arithmetic Mean. College Mathematics Journal, 2014, 45, 364-364.	0.1	0
42	A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection. Mathematics and Computers in Simulation, 2014, 106, 95-108.	4.4	1
43	Properties of triangulations obtained by the longest-edge bisection. Open Mathematics, 2014, 12, .	1.0	2
44	There are simple and robust refinements (almost) as good as Delaunay. Mathematics and Computers in Simulation, 2014, 106, 84-94.	4.4	3
45	Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric. Applied Mathematics and Computation, 2013, 221, 424-432.	2.2	7
46	Proof Without Words: Fibonacci Triangles and Trapezoids. Mathematics Magazine, 2013, 86, 55-55. Two-sided estimation of diameters, reduction rate for the longest edge n-section of triangles with	0.1	0
47	<pre><mml:math <="" altimg="si24.gif" overflow="scroll" pre="" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"></mml:math></pre>	2.2	1
48	Engineering, 2013, , 511-522.	0.4	0
49	Properties of the longest-edge <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si8.gif" display="inline" overflow="scroll"><mml:mi>n</mml:mi></mml:math> -section refinement scheme for triangular meshes. Applied Mathematics Letters, 2012, 25, 2037-2039.	2.7	11
50	A new proof of the degeneracy property of the longest-edge n-section refinement scheme for triangular meshes. Applied Mathematics and Computation, 2012, 219, 2342-2344.	2.2	6
51	A local refinement algorithm for the longest-edge trisection of triangle meshes. Mathematics and Computers in Simulation, 2012, 82, 2971-2981.	4.4	6
52	A note on "Some inequalities in inner product spaces related to the generalized triangle inequality―by S.S. Dragomir et al Applied Mathematics and Computation, 2011, 217, 9497-9498.	2.2	0
53	Proof Without Words: Mengoli's Series. Mathematics Magazine, 2010, 83, 140-140.	0.1	0
54	On the non-degeneracy property of the longest-edge trisection of triangles. Applied Mathematics and Computation, 2010, 216, 862-869.	2.2	16

#	Article	IF	CITATIONS
55	94.18 Proof without words: Two inequalities proved by convexity. Mathematical Gazette, 2010, 94, 306-308.	0.0	0
56	Proof Without Words: Bernoulli's Inequality. Mathematics Magazine, 2009, 82, 62-62.	0.1	0
57	Binomial Transforms of the k-Fibonacci Sequence. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10, 1527-1538.	1.0	13
58	Local refinement based on the 7-triangle longest-edge partition. Mathematics and Computers in Simulation, 2009, 79, 2444-2457.	4.4	6
59	Four-triangles adaptive algorithms for RTIN terrain meshes. Mathematical and Computer Modelling, 2009, 49, 1012-1020.	2.0	10
60	On k-Fibonacci sequences and polynomials and their derivatives. Chaos, Solitons and Fractals, 2009, 39, 1005-1019.	5.1	86
61	The metallic ratios as limits of complex valued transformations. Chaos, Solitons and Fractals, 2009, 41, 1-13.	5.1	3
62	k-Fibonacci sequences modulo m. Chaos, Solitons and Fractals, 2009, 41, 497-504.	5.1	21
63	On k-Fibonacci numbers of arithmetic indexes. Applied Mathematics and Computation, 2009, 208, 180-185.	2.2	29
64	Proof Without Words: Bernoulli's Inequality. Mathematics Magazine, 2009, 82, 62-62.	0.1	1
65	The seven-triangle longest-side partition of triangles and mesh quality improvement. Finite Elements in Analysis and Design, 2008, 44, 748-758.	3.2	11
66	The k-Fibonacci hyperbolic functions. Chaos, Solitons and Fractals, 2008, 38, 409-420.	5.1	35
67	On the 3-dimensional k-Fibonacci spirals. Chaos, Solitons and Fractals, 2008, 38, 993-1003.	5.1	22
68	Combinatorial proofs of Honsberger-type identities. International Journal of Mathematical Education in Science and Technology, 2008, 39, 785-792.	1.4	1
69	Identities for generalized Fibonacci numbers: a combinatorial approach. International Journal of Mathematical Education in Science and Technology, 2008, 39, 563-566.	1.4	0
70	92.59 A recurrence relation for Fibonacci sums: a combinatorial approach. Mathematical Gazette, 2008, 92, 480-482.	0.0	0
71	A Triangle Inequality and its Elementary Proof. Math Horizons, 2008, 15, 30-30.	0.0	0
72	Proof Without Words: Exponential Inequalities. Mathematics Magazine, 2008, 81, 374-374.	0.1	1

#	Article	IF	CITATIONS
73	Proof Without Words: Alternating Sums of Squares of Odd Numbers. Mathematics Magazine, 2007, 80, 74-75.	0.1	1
74	Proof Without Words: Alternating Sum of an Even Number of Triangular Numbers. Mathematics Magazine, 2007, 80, 76-76.	0.1	0
75	Proof Without Words: Every Triangle Can Be Subdivided into Six Isosceles Triangles. Mathematics Magazine, 2007, 80, 195-195.	0.1	0
76	A geometric diagram and hybrid scheme for triangle subdivision. Computer Aided Geometric Design, 2007, 24, 19-27.	1.2	13
77	The eight-tetrahedra longest-edge partition and Kuhn triangulations. Computers and Mathematics With Applications, 2007, 54, 427-433.	2.7	8
78	On the Fibonacci k-numbers. Chaos, Solitons and Fractals, 2007, 32, 1615-1624.	5.1	197
79	The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons and Fractals, 2007, 33, 38-49.	5.1	135
80	Refinement based on longest-edge and self-similar four-triangle partitions. Mathematics and Computers in Simulation, 2007, 75, 251-262.	4.4	8
81	Block-balanced meshes in iterative uniform refinement. Computer Aided Geometric Design, 2006, 23, 684-697.	1.2	0
82	Propagation of longest-edge mesh patterns in local adaptive refinement. Communications in Numerical Methods in Engineering, 2006, 24, 543-553.	1.3	10
83	Proof without words: Knopp series for (pi). Teaching Mathematics and Computer Science, 2006, 4, 451-452.	0.2	0
84	Proof without Words: Sum of a Geometric Series via Equal Base Angles in Isosceles Triangles. Mathematics Magazine, 2006, 79, 250.	0.1	0
85	The propagation problem in longest-edge refinement. Finite Elements in Analysis and Design, 2005, 42, 130-151.	3.2	17
86	Average adjacencies for tetrahedral skeleton-regular partitions. Journal of Computational and Applied Mathematics, 2005, 177, 141-158.	2.0	4
87	Non-degeneracy study of the 8-tetrahedra longest-edge partition. Applied Numerical Mathematics, 2005, 55, 458-472.	2.1	19
88	A comparative study between some bisection based partitions in 3D. Applied Numerical Mathematics, 2005, 55, 357-367.	2.1	12
89	Fractality of refined triangular grids and space-filling curves. Engineering With Computers, 2005, 20, 323-332.	6.1	7
90	Proof without words: limit of a recursive sequence. Teaching Mathematics and Computer Science, 2005. 3, 121-122.	0.2	0

#	Article	IF	CITATIONS
91	Adaptive techniques for unstructured nested meshes. Applied Numerical Mathematics, 2004, 51, 565-579.	2.1	1
92	The 8-tetrahedra longest-edge partition of right-type tetrahedra. Finite Elements in Analysis and Design, 2004, 41, 253-265.	3.2	11
93	Mesh quality improvement and other properties in the four-triangles longest-edge partition. Computer Aided Geometric Design, 2004, 21, 353-369.	1.2	26
94	Non-equivalent partitions of d-triangles with Steiner points. Applied Numerical Mathematics, 2004, 49, 415-430.	2.1	1
95	Proof without words. Teaching Mathematics and Computer Science, 2004, 2, 207.	0.2	0
96	On the adjacencies of triangular meshes based on skeleton-regular partitions. Journal of Computational and Applied Mathematics, 2002, 140, 673-693.	2.0	14
97	Graph-based data structures for skeleton-based refinement algorithms. Communications in Numerical Methods in Engineering, 2001, 17, 903-910.	1.3	16
98	A 3D refinement/derefinement algorithm for solving evolution problems. Applied Numerical Mathematics, 2000, 32, 401-418.	2.1	25
99	Local refinement of simplicial grids based on the skeleton. Applied Numerical Mathematics, 2000, 32, 195-218.	2.1	82
100	Application of a nonlinear evolution model to fire propagation. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 2873-2882.	1.1	18
101	The fractal behaviour of triangular refined/derefined meshes. Communications in Numerical Methods in Engineering, 1996, 12, 295-302.	1.3	8
102	An improved derefinement algorithm of nested meshes. Advances in Engineering Software, 1996, 27, 51-57.	3.8	13