List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4826543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural modification of whey protein isolate by cinnamaldehyde and stabilization effect on β-carotene-loaded emulsions and emulsion gels. Food Chemistry, 2022, 366, 130602.	8.2	17
2	Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT - Food Science and Technology, 2022, 154, 112605.	5.2	14
3	Improvement of O/W emulsion performance by adjusting the interaction between gelatin and bacterial cellulose nanofibrils. Carbohydrate Polymers, 2022, 276, 118806.	10.2	14
4	Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions. Food Hydrocolloids, 2022, 126, 107480.	10.7	36
5	Nanocellulose from bamboo shoots as perfect Pickering stabilizer: Effect of the emulsification process on the interfacial and emulsifying properties. Food Bioscience, 2022, 46, 101596.	4.4	10
6	Distinct cellulose nanofibrils generated for improved Pickering emulsions and lignocellulose-degradation enzyme secretion coupled with high bioethanol production in natural rice mutants. Green Chemistry, 2022, 24, 2975-2987.	9.0	27
7	Highly Unidirectional Radiation Enhancement Based on a Hybrid Multilayer Dimer. Nanomaterials, 2022, 12, 710.	4.1	0
8	Microencapsulation of astaxanthin based on emulsion solvent evaporation and subsequent spray drying. Journal of Food Science, 2022, 87, 998-1008.	3.1	3
9	Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chemistry, 2022, 384, 132589.	8.2	23
10	Properties and stability of water-in-water emulsions stabilized by microfibrillated bacterial cellulose. Food Hydrocolloids, 2022, 130, 107698.	10.7	14
11	Novel bacterial cellulose-TiO2 stabilized Pickering emulsion for photocatalytic degradation. Cellulose, 2022, 29, 5223-5234.	4.9	5
12	Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. International Journal of Biological Macromolecules, 2021, 166, 1419-1428.	7.5	13
13	Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydrate Polymers, 2021, 254, 117421.	10.2	20
14	pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS Omega, 2021, 6, 2734-2741.	3.5	12
15	Chlorine Rechargeable Halamine Biocidal Alginate/Polyacrylamide Hydrogel Beads for Improved Sanitization of Fresh Produce. Journal of Agricultural and Food Chemistry, 2021, 69, 13323-13330.	5.2	2
16	Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. Journal of Colloid and Interface Science, 2021, 589, 388-400.	9.4	39
17	Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils. Food Chemistry, 2021, 349, 129163.	8.2	28
18	Beeswax: A potential self-emulsifying agent for the construction of thermal-sensitive food W/O emulsion. Food Chemistry, 2021, 349, 129203.	8.2	38

SHILIN LIU

#	Article	IF	CITATIONS
19	Effect of bagasse content on low frequency acoustic performance of soy oilâ€based biodegradable foams filled with bagasse and regulation mechanism analysis. Journal of Applied Polymer Science, 2021, 138, 51457.	2.6	4
20	Development of Salt- and Gastric-Resistant Whey Protein Isolate Stabilized Emulsions in the Presence of Cinnamaldehyde and Application in Salad Dressing. Foods, 2021, 10, 1868.	4.3	8
21	Enhanced stability and bioaccessibility of nobiletin in whey protein/cinnamaldehyde-stabilized microcapsules and application in yogurt. Food Structure, 2021, 30, 100217.	4.5	9
22	Effects of Lactobacillus plantarum C7 and Staphylococcus warneri S6 on flavor quality and bacterial diversity of fermented meat rice, a traditional Chinese food. Food Research International, 2021, 150, 110745.	6.2	17
23	Construction of cellulose-based Pickering stabilizer as a novel interfacial antioxidant: A bioinspired oxygen protection strategy. Carbohydrate Polymers, 2020, 229, 115395.	10.2	25
24	Coagulation mechanism of cellulose/metal nanohybrids through a simple one-step process and their interaction with Cr (VI). International Journal of Biological Macromolecules, 2020, 142, 404-411.	7.5	12
25	Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocolloids, 2020, 101, 105519.	10.7	39
26	Edible foam based on pickering effect of bacterial cellulose nanofibrils and soy protein isolates featuring interfacial network stabilization. Food Hydrocolloids, 2020, 100, 105440.	10.7	56
27	Highly efficient removal of amoxicillin from water by Mg-Al layered double hydroxide/cellulose nanocomposite beads synthesized through in-situ coprecipitation method. International Journal of Biological Macromolecules, 2020, 149, 93-100.	7.5	62
28	Water-insoluble dietary fibers from bamboo shoot used as plant food particles for the stabilization of O/W Pickering emulsion. Food Chemistry, 2020, 310, 125925.	8.2	48
29	A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydrate Polymers, 2020, 231, 115694.	10.2	34
30	Structure and Rheological Properties of Glycerol Monolaurate-Induced Organogels: Influence of Hydrocolloids with Different Surface Charge. Molecules, 2020, 25, 5117.	3.8	4
31	Oleogel Films Through the Pickering Effect of Bacterial Cellulose Nanofibrils Featuring Interfacial Network Stabilization. Journal of Agricultural and Food Chemistry, 2020, 68, 9150-9157.	5.2	18
32	Novel stable pickering emulsion based solid foams efficiently stabilized by microcrystalline cellulose/chitosan complex particles. Food Hydrocolloids, 2020, 108, 106044.	10.7	33
33	Influence of pH on property and lipolysis behavior of cinnamaldehyde conjugated chitosan-stabilized emulsions. International Journal of Biological Macromolecules, 2020, 161, 587-595.	7.5	16
34	Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan. Food Chemistry, 2020, 331, 127108.	8.2	68
35	Shewanella oneidensis MR-1 impregnated Ca-alginate capsule for efficient Cr(VI) reduction and Cr(III) adsorption. Environmental Science and Pollution Research, 2020, 27, 16745-16753.	5.3	17
36	An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water. Bioresource Technology, 2020, 302, 122812.	9.6	26

#	Article	IF	CITATIONS
37	One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. Journal of Agricultural and Food Chemistry, 2020, 68, 5412-5425.	5.2	42
38	Concentrated O/W Pickering emulsions stabilized by soy protein/cellulose nanofibrils: Influence of pH on the emulsification performance. Food Hydrocolloids, 2020, 108, 106025.	10.7	61
39	Preparation of Polyanionic Cellulosic Microparticles with Antioxidant Capacity by Introducing Sulphurous Acid Groups onto Cellulose. Advances in Polymer Technology, 2019, 2019, 1-8.	1.7	2
40	Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydrate Polymers, 2019, 223, 115065.	10.2	54
41	Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids, 2019, 97, 105214.	10.7	64
42	Regenerable bagasse-based carbon activated by in situ formation of zero-valent zinc microparticles for high-performance degradation of amoxicillin in water. Environmental Science and Pollution Research, 2019, 26, 27677-27686.	5.3	6
43	Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocolloids, 2019, 97, 105180.	10.7	74
44	Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Analytical Chemistry, 2019, 91, 15461-15468.	6.5	75
45	Bagasse as functional fillers to improve and control biodegradability of soy oil-based rigid polyurethane foams. Korean Journal of Chemical Engineering, 2019, 36, 1740-1745.	2.7	12
46	Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. International Journal of Biological Macromolecules, 2019, 128, 673-680.	7.5	51
47	Hydrophobic modification of regenerated cellulose microparticles with enhanced emulsifying capacity for O/W Pickering emulsion. Cellulose, 2019, 26, 6215-6228.	4.9	19
48	Surface modification of microcrystalline cellulose: Physicochemical characterization and applications in the Stabilization of Pickering emulsions. International Journal of Biological Macromolecules, 2019, 132, 1176-1184.	7.5	52
49	Space Charge Characteristics of Polypropylene Modified by Rare Earth Nucleating Agent for β Crystallization. Materials, 2019, 12, 42.	2.9	14
50	Porous structured cellulose microsphere acts as biosensor for glucose detection with "signal-and-color―output. Carbohydrate Polymers, 2019, 205, 295-301.	10.2	19
51	Controllable Viscoelastic Properties of Whey Protein-Based Emulsion Gels by Combined Cross-Linking with Calcium Ions and Cinnamaldehyde. ACS Applied Bio Materials, 2019, 2, 311-320.	4.6	16
52	O/W Pickering Emulsion Templated Organo-hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Applied Bio Materials, 2019, 2, 480-487.	4.6	26
53	Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocolloids, 2019, 88, 180-189.	10.7	101
54	Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose, 2018, 25, 1617-1623.	4.9	14

#	Article	IF	CITATIONS
55	Enhancement of physicochemical properties of whey protein-stabilized nanoemulsions by interfacial cross-linking using cinnamaldehyde. Food Hydrocolloids, 2018, 77, 976-985.	10.7	56
56	Development of poly (lactic acid) microspheres and their potential application in Pickering emulsions stabilization. International Journal of Biological Macromolecules, 2018, 108, 105-111.	7.5	11
57	Ethyl cellulose aqueous dispersions: A fascinating supporter for increasing the solubility and sustained-release of cinnamaldehyde. Journal of Food Processing and Preservation, 2018, 42, e13696.	2.0	1
58	Hypolipidemic activities of partially deacetylated α-chitin nanofibers/nanowhiskers in mice. Food and Nutrition Research, 2018, 62, .	2.6	15
59	Interfacial Solid-Phase Chemical Modification with Mannich Reaction and Fe(III) Chelation for Designing Lignin-Based Spherical Nanoparticle Adsorbents for Highly Efficient Removal of Low Concentration Phosphate from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 6539-6547.	6.7	80
60	Ethyl cellulose nanodispersions as stabilizers for oil in Âwater Pickering emulsions. Scientific Reports, 2017, 7, 12079.	3.3	20
61	In Situ Interfacial Conjugation of Chitosan with Cinnamaldehyde during Homogenization Improves the Formation and Stability of Chitosan-Stabilized Emulsions. Langmuir, 2017, 33, 14608-14617.	3.5	57
62	Cellulose gel dispersions: fascinating green particles for the stabilization of oil/water Pickering emulsion. Cellulose, 2017, 24, 207-217.	4.9	36
63	Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydrate Polymers, 2017, 156, 19-25.	10.2	86
64	Probiotics in cellulose houses: Enhanced viability and targeted delivery of Lactobacillus plantarum. Food Hydrocolloids, 2017, 62, 66-72.	10.7	37
65	A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture. Materials, 2017, 10, 39.	2.9	1
66	pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Advances, 2016, 6, 31374-31385.	3.6	43
67	Porous Cellulose Microgel Particle: A Fascinating Host for the Encapsulation, Protection, and Delivery of <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3430-3436.	5.2	37
68	A facile pathway for the incorporation of silica into cellulose aerogels with increased optical transmittance. Materials Technology, 2016, 31, 549-556.	3.0	5
69	Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 2016, 61, 662-671.	10.7	223
70	Preparation of a magnetic responsive immobilized lipase–cellulose microgel catalyst system: role of the surface properties of the magnetic cellulose microgel. RSC Advances, 2016, 6, 7339-7347.	3.6	7
71	Engineering Multifunctional Films Based on Metal-Phenolic Networks for Rational pH-Responsive Delivery and Cell Imaging. ACS Biomaterials Science and Engineering, 2016, 2, 317-325.	5.2	68
72	Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chemistry, 2016, 197, 250-256.	8.2	77

#	Article	IF	CITATIONS
73	Fabrication of chitin microspheres and their multipurpose application as catalyst support and adsorbent. Carbohydrate Polymers, 2015, 120, 53-59.	10.2	43
74	Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids and Surfaces B: Biointerfaces, 2015, 126, 459-466.	5.0	85
75	Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin. RSC Advances, 2015, 5, 13891-13900.	3.6	160
76	Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Research International, 2015, 75, 98-105.	6.2	57
77	An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresource Technology, 2015, 194, 403-406.	9.6	201
78	Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1224-1233.	5.0	58
79	Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Advances, 2015, 5, 87266-87276.	3.6	44
80	New photocatalyst based on graphene oxide/chitin for degradation of dyes under sunlight. International Journal of Biological Macromolecules, 2015, 81, 477-482.	7.5	31
81	The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydrate Polymers, 2014, 107, 57-64.	10.2	71
82	Highly transparent and flexible silica/cellulose films with a low coefficient of thermal expansion. RSC Advances, 2014, 4, 52349-52356.	3.6	5
83	Reduction of the Water Wettability of Cellulose Film through Controlled Heterogeneous Modification. ACS Applied Materials & Interfaces, 2014, 6, 5726-5734.	8.0	64
84	Clarification of GO acted as a barrier against the crack propagation of the cellulose composite films. Composites Science and Technology, 2014, 104, 52-58.	7.8	8
85	Tunable self-assembly of nanogels into superstructures with controlled organization. RSC Advances, 2014, 4, 35268-35271.	3.6	7
86	Evolution of cellulose into flexible conductive green electronics: a smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances, 2014, 4, 34134-34143.	3.6	37
87	Phase behavior of ovalbumin and carboxymethylcellulose composite system. Carbohydrate Polymers, 2014, 109, 64-70.	10.2	25
88	Highly flexible, transparent cellulose composite films used in UV imprint lithography. Cellulose, 2013, 20, 907-918.	4.9	14
89	Completely green synthesis of Ag nanoparticles stabilized by soy protein isolate under UV irradiation. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 852-856.	1.0	5
90	Celluloseâ€nanowhiskerâ€ŧemplated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. Journal of Applied Polymer Science, 2012, 126, E282.	2.6	31

#	Article	IF	CITATIONS
91	Effects of external factors on the arrangement of plate-liked Fe2O3 nanoparticles in cellulose scaffolds. Carbohydrate Polymers, 2012, 87, 830-838.	10.2	11
92	Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydrate Polymers, 2012, 89, 551-557.	10.2	77
93	Effects of Crystalline Phase and Particle Size on the Properties of Plate-Like Fe ₂ O ₃ Nanoparticles during γ- to α-Phase Transformation. Journal of Physical Chemistry C, 2011, 115, 3602-3611.	3.1	38
94	In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose, 2011, 18, 663-673.	4.9	47
95	Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose, 2011, 18, 945-956.	4.9	44
96	Cellulose scaffolds modulated synthesis of Co3O4 nanocrystals: preparation, characterization and properties. Cellulose, 2011, 18, 1273-1283.	4.9	8
97	Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose, 2010, 17, 1159-1169.	4.9	48
98	TiO ₂ Immobilized in Cellulose Matrix for Photocatalytic Degradation of Phenol under Weak UV Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 7806-7811.	3.1	222
99	Supramolecular Structure and Properties of High Strength Regenerated Cellulose Films. Macromolecular Bioscience, 2009, 9, 29-35.	4.1	28
100	Structure and magnetic properties of regenerated cellulose/Fe ₃ O ₄ nanocomposite films. Journal of Applied Polymer Science, 2009, 111, 2477-2484.	2.6	58
101	Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose, 2009, 16, 189-198.	4.9	89
102	CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H ₂ Production under Visible Light Irradiation. Journal of Physical Chemistry C, 2009, 113, 16021-16026.	3.1	143
103	In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry, 2009, 19, 3538.	6.7	204
104	Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles. Journal of Applied Polymer Science, 2006, 101, 3600-3608.	2.6	25
105	Synthesis and Alignment of Iron Oxide Nanoparticles in a Regenerated Cellulose Film. Macromolecular Rapid Communications, 2006, 27, 2084-2089.	3.9	44