
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In response to the letter by BOSTANCIKLIOGLU. Brain, Behavior, and Immunity, 2022, 101, 59.	4.1	Ο
2	EnteropathogenicÂEscherichia coliÂInfection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Digestive Diseases and Sciences, 2021, 66, 2250-2260.	2.3	11
3	Myelin as a regulator of development of the microbiota-gut-brain axis. Brain, Behavior, and Immunity, 2021, 91, 437-450.	4.1	59
4	Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis. Molecular and Cellular Proteomics, 2021, 20, 100130.	3.8	19
5	Perfluoroalkyl substances are increased in patients with late-onset ulcerative colitis and induce intestinal barrier defects <i>ex vivo</i> in murine intestinal tissue. Scandinavian Journal of Gastroenterology, 2021, 56, 1286-1295.	1.5	8
6	Neonatal Enteropathogenic Escherichia coli Infection Disrupts Microbiota-Gut-Brain Axis Signaling. Infection and Immunity, 2021, 89, e0005921.	2.2	9
7	Skin-brain axis signaling mediates behavioral changes after skin wounding. Brain, Behavior, & Immunity - Health, 2021, 15, 100279.	2.5	6
8	Role of pattern recognition receptors and the microbiota in neurological disorders. Journal of Physiology, 2021, 599, 1379-1389.	2.9	17
9	Development of the Microbiota–Gut–Brain Axis in Early Life. , 2021, , 23-47.		0
10	16416 Cutaneous wounds and wound infection affect cognition and behavior in mice. Journal of the American Academy of Dermatology, 2020, 83, AB178.	1.2	0
11	A murine model of pediatric inflammatory bowel disease causes microbiota-gut-brain axis deficits in adulthood. American Journal of Physiology - Renal Physiology, 2020, 319, G361-G374.	3.4	27
12	Shaping the future of physiology. Journal of Physiology, 2020, 598, 2511-2512.	2.9	0
13	Microbiomeâ€skinâ€brain axis: A novel paradigm for cutaneous wounds. Wound Repair and Regeneration, 2020, 28, 282-292.	3.0	12
14	Sensory Nociceptive Neurons Contribute to Host Protection During Enteric Infection With Citrobacter rodentium. Journal of Infectious Diseases, 2020, 221, 1978-1988.	4.0	12
15	Microbiota-immune interactions: from gut to brain. LymphoSign Journal, 2020, 7, 1-23.	0.2	24
16	Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. Environmental Pollution, 2019, 253, 708-721.	7.5	47
17	Nodâ€like receptors are critical for gut–brain axis signalling in mice. Journal of Physiology, 2019, 597, 5777-5797.	2.9	48
18	The role of the gut microbiome in mediating neurotoxic outcomes to PCB exposure. NeuroToxicology, 2019, 75, 30-40.	3.0	15

#	Article	IF	CITATIONS
19	Sexually Dimorphic Influence of Neonatal Antibiotics on Bone. Journal of Orthopaedic Research, 2019, 37, 2122-2129.	2.3	3
20	Topical Fluoxetine as a Novel Therapeutic That Improves Wound Healing in Diabetic Mice. Diabetes, 2019, 68, 1499-1507.	0.6	18
21	T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathogens, 2019, 15, e1007719.	4.7	36
22	Targeting the Microbiota, From Irritable Bowel Syndrome to Mood Disorders: Focus on Probiotics and Prebiotics. Current Pathobiology Reports, 2018, 6, 1-13.	3.4	32
23	Intestinal Lactobacillus in health and disease, a driver or just along for the ride?. Current Opinion in Biotechnology, 2018, 49, 140-147.	6.6	251
24	Visceral pain: gut microbiota, a new hope?. Journal of Biomedical Science, 2018, 25, 73.	7.0	67
25	Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathogens, 2018, 14, e1007133.	4.7	33
26	NODâ€like Receptors: Novel Regulators of the Microbiotaâ€Gutâ€Brain Axis in Mice. FASEB Journal, 2018, 32, .	0.5	0
27	System Metaglycomes: Mapping Dynamic Cell Surface Nâ€glycome, Oâ€glycome and Glycolipidome by Mass Spectrometry. FASEB Journal, 2018, 32, 673.11.	0.5	1
28	Neuroanatomy of the spleen: Mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE, 2017, 12, e0182416.	2.5	57
29	Cognitive Function and the Microbiome. International Review of Neurobiology, 2016, 131, 227-246.	2.0	83
30	Modulation of the microbiota-gut-brain axis by probiotics in a murine model of inflammatory bowel disease. American Journal of Physiology - Renal Physiology, 2016, 310, G989-G998.	3.4	107
31	High Fat Diet Causes Depletion of Intestinal Eosinophils Associated with Intestinal Permeability. PLoS ONE, 2015, 10, e0122195.	2.5	97
32	Administration of Probiotics Normalizes Deficits in the Microbiotaâ€Gutâ€Brain Axis Induced by DSSâ€Colitis. FASEB Journal, 2015, 29, 1010.1.	0.5	0
33	Nod1/Nod2 Receptors Modulate the Microbiotaâ€Gutâ€Brain Axis. FASEB Journal, 2015, 29, 857.4.	0.5	0
34	Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. American Journal of Physiology - Renal Physiology, 2014, 307, G793-G802.	3.4	114
35	Microbiota-Gut-Brain Axis and Cognitive Function. Advances in Experimental Medicine and Biology, 2014, 817, 357-371.	1.6	125
36	The precipitation of behavioral defects due to inflammation in the DSS mouse model of colitis (LB748). FASEB Journal, 2014, 28, LB748.	0.5	0

#	Article	IF	CITATIONS
37	TLR3, TRIF, and Caspase 8 Determine Double-Stranded RNA-Induced Epithelial Cell Death and Survival In Vivo. Journal of Immunology, 2013, 190, 418-427.	0.8	56
38	Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea. Current Opinion in Pharmacology, 2013, 13, 895-899.	3.5	18
39	Rac2-Deficiency Leads to Exacerbated and Protracted Colitis in Response to Citrobacter rodentium Infection. PLoS ONE, 2013, 8, e61629.	2.5	22
40	Probiotics Are Effective for the Prevention and Treatment of Citrobacter rodentium–Induced Colitis in Mice. Journal of Infectious Diseases, 2012, 206, 99-109.	4.0	65
41	Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60, 307-317.	12.1	723
42	Thymic Stromal Lymphopoetin-Induced Expression of the Endogenous Inhibitory Enzyme SLPI Mediates Recovery from Colonic Inflammation. Immunity, 2011, 35, 223-235.	14.3	97
43	Diet and nerves: the impact of maternal feeding on newborn intestinal permeability. Journal of Physiology, 2011, 589, 4091-4091.	2.9	3
44	Enterohaemorrhagic, but not enteropathogenic, Escherichia coli infection of epithelial cells disrupts signalling responses to tumour necrosis factor-alpha. Microbiology (United Kingdom), 2011, 157, 2963-2973.	1.8	7
45	Lactobacillus rhamnosus GG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling. Microbiology (United Kingdom), 2010, 156, 3288-3297.	1.8	176
46	Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology and Hepatology, 2010, 7, 503-514.	17.8	722
47	Probiotics Prevent Death Caused by <i>Citrobacter rodentium</i> Infection in Neonatal Mice. Journal of Infectious Diseases, 2010, 201, 81-91.	4.0	47
48	Osteopontin Mediates Citrobacter rodentium-Induced Colonic Epithelial Cell Hyperplasia and Attaching-Effacing Lesions. American Journal of Pathology, 2010, 177, 1320-1332.	3.8	20
49	Psychological Stress and Changes in the Intestinal Microflora Impact Memory in Mice. FASEB Journal, 2010, 24, 1012.2.	0.5	0
50	Early Life Stress Induces Both Acute and Chronic Colonic Barrier Dysfunction. NeoReviews, 2009, 10, e191-e197.	0.8	9
51	Strain-specific probiotic (Lactobacillus helveticus) inhibition ofCampylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiology Letters, 2009, 300, 146-152.	1.8	93
52	Probiotics prevent death caused by Citrobacter rodentium infection in neonatal mice via T cells. FASEB Journal, 2009, 23, 978.5.	0.5	0
53	Pathophysiological Mechanisms of Stress-Induced Intestina Damage. Current Molecular Medicine, 2008, 8, 274-281.	1.3	242
54	Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. American Journal of Physiology - Renal Physiology, 2007, 293, G198-G203.	3.4	128

#	Article	IF	CITATIONS
55	Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut, 2007, 56, 1522-1528.	12.1	387
56	Neonatal Maternal Separation Causes Colonic Dysfunction in Rat Pups Including Impaired Host Resistance. Pediatric Research, 2006, 59, 83-88.	2.3	127
57	Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. American Journal of Physiology - Renal Physiology, 2002, 283, G1257-G1263.	3.4	204