
Sung-Wook Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Microfiber-Templated Microfluidic Chips with Microfibrous Channels for High Throughput and Continuous Production of Nanoscale Droplets. ACS Macro Letters, 2022, 11, 127-134.	4.8	7
2	lonic Cross-Linkable Alendronate-Conjugated Biodegradable Polyurethane Films for Potential Guided Bone Regeneration. Macromolecular Research, 2022, 30, 99-106.	2.4	1
3	Production of Uniform Microspheres Using a Simple Microfluidic Device with Silica Capillary. Macromolecular Research, 2021, 29, 82-88.	2.4	2
4	Fabrication of Biodegradable Polyurethane Foam Scaffolds with Customized Shapes and Controlled Mechanical Properties by Gas Foaming Technique. Macromolecular Materials and Engineering, 2021, 306, 2100114.	3.6	11
5	Enhanced osteogenic differentiation of alendronate-conjugated nanodiamonds for potential osteoporosis treatment. Biomaterials Research, 2021, 25, 28.	6.9	10
6	Peripheral Nerve Regeneration Using a Nerve Conduit with Olfactory Ensheathing Cells in a Rat Model. Tissue Engineering and Regenerative Medicine, 2021, 18, 453-465.	3.7	12
7	3D-Printed Poly Lactic Acid Scaffolds with Tetrapod-Interlocked Structure Containing Dipyridamole. Macromolecular Research, 2020, 28, 5-8.	2.4	2
8	Fabrication of nanodiamonds modified with hyaluronic acid and chlorin e6 for selective photothermal and photodynamic tumor therapy. Polymers for Advanced Technologies, 2020, 31, 2990-2998.	3.2	5
9	Transdermal delivery of FITC-Dextrans with different molecular weights using radiofrequency microporation. Biomaterials Research, 2020, 24, 22.	6.9	5
10	Curcuminâ€loaded biodegradable polyurethane scaffolds modified with gelatin using 3D printing technology for cartilage tissue engineering. Polymers for Advanced Technologies, 2019, 30, 3083-3090.	3.2	11
11	Synthesis and Characterizations of Biodegradable Polyurethane Microspheres with Dexamethasone for Drug Delivery. Macromolecular Research, 2019, 27, 839-842.	2.4	2
12	Facile fabrication of hyaluronated starch nanogels for efficient docetaxel delivery. Journal of Bioactive and Compatible Polymers, 2019, 34, 321-330.	2.1	7
13	Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Colloids and Surfaces B: Biointerfaces, 2019, 180, 273-280.	5.0	19
14	Fabrication of blue-fluorescent nanodiamonds modified with alkyl isocyanate for cellular bioimaging. Colloids and Surfaces B: Biointerfaces, 2018, 167, 191-196.	5.0	5
15	Electrosprayed Folic Acid-Conjugated Ursolic Acid Nanoparticles for Tumor Therapy. Macromolecular Research, 2018, 26, 573-576.	2.4	3
16	A heptameric peptide isolated from the marine microalga Pavlova lutheri suppresses PMA-induced secretion of matrix metalloproteinase-9 through the inactivation of the JNK, p38, and NF-ήB pathways in human fibrosarcoma cells. Journal of Applied Phycology, 2018, 30, 2367-2378.	2.8	12
17	Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. Journal of Controlled Release, 2018, 270, 237-245.	9.9	42
18	Fabrication and optimization of Nanodiamonds-composited poly(ε-caprolactone) fibrous matrices for potential regeneration of hard tissues. Biomaterials Research, 2018, 22, 16.	6.9	15

#	Article	IF	CITATIONS
19	Oneâ€Step Fabrication of Uniform Biodegradable Microbeads with Unimodal and Bimodal Porous Structures Using Spontaneous Microphase Separation. Macromolecular Materials and Engineering, 2018, 303, 1800139.	3.6	3
20	Fabrication of dihydroxyflavone-conjugated hyaluronic acid nanogels for targeted antitumoral effect. Colloids and Surfaces B: Biointerfaces, 2018, 171, 690-697.	5.0	15
21	Osteogenesis and new bone formation of alendronate-immobilized porous PLGA microspheres in a rat calvarial defect model. Journal of Industrial and Engineering Chemistry, 2017, 52, 277-286.	5.8	26
22	Targeted Tumor Therapy Based on Nanodiamonds Decorated with Doxorubicin and Folic Acid. Macromolecular Bioscience, 2017, 17, 1600180.	4.1	21
23	Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS ONE, 2017, 12, e0186877.	2.5	7
24	In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, Î ² -Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions. Molecules, 2016, 21, 1052.	3.8	12
25	Alendronate-modified hydroxyapatite nanoparticles for bone-specific dual delivery of drug and bone mineral. Macromolecular Research, 2016, 24, 623-628.	2.4	27
26	Polydimethylsiloxane Fluidic Device with Polydopamine oated Inner Channel for Production of Uniform Droplets. Macromolecular Materials and Engineering, 2016, 301, 1044-1048.	3.6	1
27	Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. Journal of Controlled Release, 2016, 232, 152-160.	9.9	72
28	pH-Responsive globular poly(ethylene glycol) for photodynamic tumor therapy. Colloids and Surfaces B: Biointerfaces, 2016, 148, 173-180.	5.0	10
29	Selective Photothermal Tumor Therapy Using Nanodiamondâ€Based Nanoclusters with Folic Acid. Advanced Functional Materials, 2016, 26, 6428-6436.	14.9	50
30	Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells. International Journal of Biological Macromolecules, 2016, 93, 1620-1632.	7.5	35
31	Fabrication of poly(L-lactide) porous beads coated with hydroxyapatite using a simple fluidic device for tissue engineering. Macromolecular Research, 2015, 23, 501-504.	2.4	5
32	Fabrication of aligned fibrous tubular scaffolds reinforced by suture wire for tracheal regeneration. Macromolecular Research, 2015, 23, 418-421.	2.4	1
33	Fabrication of poly(methyl methacrylate) and TiO2 composite microspheres with controlled morphologies and porous structures by electrospraying. Journal of Materials Science, 2015, 50, 6531-6538.	3.7	9
34	Fabrication of poly(d,l-lactide-co-glycolide) nanoparticles using a simple fluidic device with a tapered glass capillary and the effect of thermodynamic parameters. Journal of Pharmaceutical Investigation, 2015, 45, 157-161.	5.3	2
35	Fabrication of a BMP-2-immobilized porous microsphere modified by heparin for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 134, 453-460.	5.0	59
36	Cellular Uptake Behavior of Doxorubicinâ€Conjugated Nanodiamond Clusters for Efficient Cancer Therapy. Macromolecular Bioscience, 2015, 15, 1469-1475.	4.1	25

SUNG-WOOK CHOI

#	Article	IF	CITATIONS
37	Effect of lactoferrin-impregnated porous poly(lactide-co-glycolide) (PLGA) microspheres on osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). Colloids and Surfaces B: Biointerfaces, 2014, 122, 457-464.	5.0	42
38	Biodegradable uniform microspheres based on solid-in-oil-in-water emulsion for drug delivery: A comparison of homogenization and fluidic device. Journal of Bioactive and Compatible Polymers, 2014, 29, 445-457.	2.1	5
39	Fabrication of Tubular Scaffolds with Controllable Fiber Orientations Using Electrospinning for Tissue Engineering. Macromolecular Materials and Engineering, 2014, 299, 1425-1429.	3.6	6
40	Edible HPMC films with indomethacin/HPMCP microparticles in oral delivery for taste-masking. Macromolecular Research, 2014, 22, 1156-1159.	2.4	2
41	Sustained release of antibiotics from uniform poly (Îμ-caprolactone) microspheres prepared by a simple fluidic device with a tapered glass capillary. Journal of Bioactive and Compatible Polymers, 2014, 29, 318-329.	2.1	3
42	Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454, 84-88.	4.7	27
43	Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 2014, 121, 395-399.	5.0	26
44	Production of uniform emulsion droplets using a simple fluidic device with a peristaltic pump. Macromolecular Research, 2014, 22, 557-561.	2.4	7
45	Enhanced effects of osteoclastogenesis inhibition by curcumin-delivering heparin nanoparticles. Macromolecular Research, 2014, 22, 647-656.	2.4	Ο
46	Entrapment of Protein Using Electrosprayed Poly(<scp>d,l</scp> ″actideâ€ <i>co</i> â€glycolide) Microspheres with a Porous Structure for Sustained Release. Macromolecular Rapid Communications, 2014, 35, 1033-1038.	3.9	24
47	Uniform tricalcium phosphate beads with an open porous structure for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 112, 368-373.	5.0	19
48	Inverse opal scaffolds for applications in regenerative medicine. Soft Matter, 2013, 9, 9747.	2.7	58
49	A facile method for preparation of polycaprolactone/tricalcium phosphate fibrous matrix with a gradient mineral content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 429, 134-141.	4.7	10
50	Multifunctional Magnetic Nanoparticles Modified with Polyethylenimine and Folic Acid for Biomedical Theranostics. Langmuir, 2013, 29, 5962-5967.	3.5	43
51	Neovascularization in Biodegradable Inverse Opal Scaffolds with Uniform and Precisely Controlled Pore Sizes. Advanced Healthcare Materials, 2013, 2, 145-154.	7.6	117
52	A Facile Method for the Preparation of Monodisperse Beads with Uniform Pore Sizes for Cell Culture. Macromolecular Rapid Communications, 2013, 34, 399-405.	3.9	16
53	Topical delivery of retinol emulsions co-stabilised by PEO-PCL-PEO triblock copolymers: effect of PCL block length. Journal of Microencapsulation, 2012, 29, 739-746.	2.8	11
54	Biodegradable porous beads and their potential applications in regenerative medicine. Journal of Materials Chemistry, 2012, 22, 11442.	6.7	66

SUNG-WOOK CHOI

#	Article	IF	CITATIONS
55	Alginate hydrogel embedding poly(D,L-lactide-co-glycolide) porous scaffold disks for cartilage tissue engineering. Macromolecular Research, 2012, 20, 447-452.	2.4	13
56	Fabrication of porous poly(acrylamide) beads with macro―and micropores. Polymer Engineering and Science, 2012, 52, 385-389.	3.1	1
57	Fabrication of porous emulsion-templated conducting composite beads by vapor phase polymerization. Macromolecular Research, 2012, 20, 433-436.	2.4	Ο
58	Fabrication of levofloxacin-loaded nanofibrous scaffolds using coaxial electrospinning. Journal of Pharmaceutical Investigation, 2012, 42, 89-93.	5.3	18
59	Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. International Journal of Pharmaceutics, 2012, 427, 417-425.	5.2	57
60	Preparation and characterization of heparinized multi-walled carbon nanotubes. Process Biochemistry, 2012, 47, 113-118.	3.7	10
61	Fabrication of nano-scale liposomes containing doxorubicin using Shirasu porous glass membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 250-255.	4.7	17
62	Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromolecular Research, 2011, 19, 213-215.	2.4	59
63	Photoluminescent synthetic wood fibers from an ionic liquid via electrospinning. Macromolecular Research, 2011, 19, 317-321.	2.4	16
64	Biocompatible charcoal composites prepared by ionic liquids for drug detoxification. Macromolecular Research, 2011, 19, 734-738.	2.4	6
65	Preparation of poly(NIPAAm)-Pluronic F68 as a thermosensitive surfactant for a controlled drug release. International Journal of Pharmaceutical Investigation, 2011, 1, 88.	0.3	5
66	A Temperatureâ€Sensitive Drug Release System Based on Phaseâ€Change Materials. Angewandte Chemie - International Edition, 2010, 49, 7904-7908.	13.8	211
67	Uniform Beads with Controllable Pore Sizes for Biomedical Applications. Small, 2010, 6, 1492-1498.	10.0	70
68	Three-Dimensional Scaffolds for Tissue Engineering: The Importance of Uniformity in Pore Size and Structure. Langmuir, 2010, 26, 19001-19006.	3.5	125
69	In Vitro Mineralization by Preosteoblasts in Poly(<scp>dl</scp> -lactide- <i>co</i> -glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles. Langmuir, 2010, 26, 12126-12131.	3.5	71
70	Fabrication of Microbeads with a Controllable Hollow Interior and Porous Wall Using a Capillary Fluidic Device. Advanced Functional Materials, 2009, 19, 2943-2949.	14.9	118
71	Chitosanâ€Based Inverse Opals: Threeâ€Dimensional Scaffolds with Uniform Pore Structures for Cell Culture. Advanced Materials, 2009, 21, 2997-3001.	21.0	168
72	Core-shell poly(d,l-lactide-co-glycolide)/poly(ethyl 2-cyanoacrylate) microparticles with doxorubicin to reduce initial burst release. Macromolecular Research, 2009, 17, 1010-1014.	2.4	13

#	Article	IF	CITATIONS
73	Preparation of Uniform Microspheres Using a Simple Fluidic Device and Their Crystallization into Closeâ€Packed Lattices. Small, 2009, 5, 454-459.	10.0	91
74	Synthesis and microphase separation of biodegradable poly($\hat{l}\mu$ -caprolactone)-poly(ethylene) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.4	Tf 50 702 T 16
75	Fabrication of Poly(<scp>L</scp> â€lactide)â€ <i>block</i> â€Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 1 AFM Study. Macromolecular Rapid Communications, 2008, 29, 175-180.	0 Tf 50 6 3.9	67 Td (gly <mark>cc</mark> 5
76	Waterborne trifunctionalsilaneâ€terminated polyurethane nanocomposite with silaneâ€modified clay. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2747-2761.	2.1	27
77	Design of surface-modified poly(d,l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. Journal of Controlled Release, 2007, 122, 24-30.	9.9	179
78	Using a stirred cell to evaluate structural changes in proteins adsorbed on particles. AICHE Journal, 2005, 51, 1048-1052.	3.6	3
79	Surface-Functionalized Nanoparticles for Controlled Drug Delivery. , 2005, 303, 121-132.		9

80Thermodynamic parameters on poly(d,l-lactide-co-glycolide) particle size in emulsification–diffusion
process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 283-289.4.769