Martin Hruby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825423/publications.pdf

Version: 2024-02-01

126858 155592 4,058 166 33 55 citations h-index g-index papers 176 176 176 5490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SHARP hydrogel for the treatment of inflammatory bowel disease. International Journal of Pharmaceutics, 2022, 613, 121392.	2.6	8
2	Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation. Pharmaceutics, 2022, 14, 276.	2.0	10
3	Nanocrystalline chloroxine possesses broad-spectrum antimicrobial activities and excellent skin tolerability in mice. Nanomedicine, 2022, 17, 137-149.	1.7	O
4	Phosphorusâ€Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for ³¹ Pâ€Magnetic Resonance Imaging. Macromolecular Bioscience, 2022, 22, e2100523.	2.1	5
5	Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer ¹⁹ F MRI Theranostics. Macromolecules, 2022, 55, 658-671.	2.2	6
6	Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors, 2022, 12, 446.	2.3	6
7	Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction. Biomacromolecules, 2022, 23, 3371-3382.	2.6	3
8	Polymer materials as promoters/inhibitors of amyloid fibril formation. Colloid and Polymer Science, 2021, 299, 343-362.	1.0	14
9	Does polysaccharide glycogen behave as a promoter of amyloid fibril formation at physiologically relevant concentrations?. Soft Matter, 2021, 17, 1628-1641.	1.2	5
10	Electrochemical deposition of highly hydrophobic perfluorinated polyaniline film for biosensor applications. RSC Advances, 2021, 11, 18852-18859.	1.7	9
11	Chemically modified glycogens: how they influence formation of amyloid fibrils?. Soft Matter, 2021, 17, 1614-1627.	1.2	2
12	Thermoresponsive properties of polyacrylamides in physiological solutions. Polymer Chemistry, 2021, 12, 5077-5084.	1.9	12
13	PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Frontiers in Immunology, 2021, 12, 641703.	2.2	21
14	Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for ¹⁹ F MRI Theranostics. Biomacromolecules, 2021, 22, 2325-2337.	2.6	24
15	pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. Journal of Controlled Release, 2021, 332, 529-538.	4.8	32
16	Development of an Acid-Labile Ketal Linked Amphiphilic Block Copolymer Nanoparticles for pH-Triggered Release of Paclitaxel. Polymers, 2021, 13, 1465.	2.0	5
17	Enhanced Antitumor Efficacy through an "AND gate―Reactive Oxygenâ€5peciesâ€Dependent pHâ€Responsiv Nanomedicine Approach. Advanced Healthcare Materials, 2021, 10, e2100304.	/e 3.9	9
18	Đ¡olloidal probe based on iron(III)-doped calcium phytate nanoparticles for 31P NMR monitoring of bacterial siderophores. Colloids and Interface Science Communications, 2021, 42, 100427.	2.0	6

#	Article	IF	CITATIONS
19	Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. Reactive and Functional Polymers, 2021, 162, 104875.	2.0	5
20	Direct Comparison of Analogous Amphiphilic Gradient and Block Polyoxazolines. Macromolecules, 2021, 54, 8182-8194.	2.2	16
21	Mannan-Based Nanodiagnostic Agents for Targeting Sentinel Lymph Nodes and Tumors. Molecules, 2021, 26, 146.	1.7	4
22	Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers, 2021, 13, 3969.	2.0	9
23	Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- <i>n</i> -Propyl/butyl-2-oxazoline. Macromolecules, 2021, 54, 10667-10681.	2.2	13
24	Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[N-(2-hydroxypropyl)methacrylamide]-Block-Poly[N-(2,2-difluoroethyl)acrylamide], Prominent 19F MRI Tracer. Nanomaterials, 2020, 10, 2231.	1.9	11
25	Lightâ€Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes. Chemistry - A European Journal, 2020, 26, 10992-11006.	1.7	13
26	Implant-forming polymeric 19F MRI-tracer with tunable dissolution. Journal of Controlled Release, 2020, 327, 50-60.	4.8	18
27	Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model. Nanomaterials, 2020, 10, 1690.	1.9	7
28	ChelatingÂPolymers for Hereditary Hemochromatosis Treatment. Macromolecular Bioscience, 2020, 20, 2000254.	2.1	5
29	Frontispiece: Lightâ€Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes. Chemistry - A European Journal, 2020, 26, .	1.7	O
30	Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncolmmunology, 2020, 9, 1738813.	2.1	37
31	γâ∈Butyrolactone Copolymerization with the Wellâ∈Documented Polymer Drug Carrier Poly(ethylene) Tj ETQq1 1 2020, 20, 1900408.	0.78431 2.1	4 rgBT /Ove 5
32	Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence. Scientific Reports, 2020, 10, 10411.	1.6	24
33	Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules, 2020, 21, 1437-1449.	2.6	29
34	Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. Journal of Controlled Release, 2020, 321, 312-323.	4.8	29
35	Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Frontiers in Chemistry, 2020, 8, 205.	1.8	12
36	Iodinated Choline Transport-Targeted Tracers. Journal of Medicinal Chemistry, 2020, 63, 15960-15978.	2.9	3

#	Article	IF	Citations
37	<p>Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6269-6285.	3.3	19
38	Physicoâ€Chemical Properties as a Key Factor in Choosing Practically Applicable Biocompatible Polymers. Macromolecular Symposia, 2019, 386, 1800241.	0.4	1
39	Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules, 2019, 20, 3453-3463.	2.6	29
40	Hydrogel Tissue Expanders for Stomatology. Part II. Poly(styrene-maleic anhydride) Hydrogels. Polymers, 2019, 11, 1087.	2.0	4
41	SET‣RP Synthesis of Wellâ€Defined Lightâ€Responsible Block Copolymer Micelles. Macromolecular Chemistry and Physics, 2019, 220, 1900238.	1.1	11
42	Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid and Polymer Science, 2019, 297, 1383-1401.	1.0	8
43	Investigation of the internal structure of thermoresponsive diblock poly(2-methyl-2-oxazoline)-b-poly[N-(2,2-difluoroethyl)acrylamide] copolymer nanoparticles. European Polymer Journal, 2019, 121, 109306.	2.6	14
44	Hybrid κ-carrageenan-based polymers showing "schizophrenic―lower and upper critical solution temperatures and potassium responsiveness. Carbohydrate Polymers, 2019, 210, 26-37.	5.1	12
45	Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers, 2019, 11, 1061.	2.0	45
46	In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids and Surfaces B: Biointerfaces, 2019, 179, 143-152.	2.5	11
47	Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules, 2019, 20, 1798-1815.	2.6	30
48	Fluorine polymer probes for magnetic resonance imaging: quo vadis?. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 173-185.	1.1	48
49	Porous Heat-Treated Polyacrylonitrile Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8496-8506.	4.0	20
50	Biopolymer strategy for the treatment of Wilson's disease. Journal of Controlled Release, 2018, 273, 131-138.	4.8	12
51	Silica-based nanoparticles are efficient delivery systems for temoporfin. Photodiagnosis and Photodynamic Therapy, 2018, 21, 275-284.	1.3	18
52	Mannan-based conjugates as a multimodal imaging platform for lymph nodes. Journal of Materials Chemistry B, 2018, 6, 2584-2596.	2.9	12
53	Poly(ethylene oxide monomethyl ether)- <i>block</i> -poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation. Biomacromolecules, 2018, 19, 2443-2458.	2.6	11
54	Distribution of Diffusion Times Determined by Fluorescence (Lifetime) Correlation Spectroscopy. Macromolecules, 2018, 51, 2796-2804.	2.2	5

#	Article	IF	CITATIONS
55	Tungsten (VI) based "molecular puzzle―photoluminescent nanoparticles easily covered with biocompatible natural polysaccharides via direct chelation. Journal of Colloid and Interface Science, 2018, 512, 308-317.	5.0	4
56	Biological characterization of a novel hybrid copolymer carrier system based on glycogen. Drug Delivery and Translational Research, 2018, 8, 73-82.	3.0	3
57	Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction. Nature Communications, 2018, 9, 4467.	5.8	18
58	Fluorescence & Eamp; bioluminescence in the quest for imaging, probing & Eamp; analysis of mycobacterial infections. Future Microbiology, 2018, 13, 933-951.	1.0	6
59	Aqueous-Based Functionalizations of Titanate Nanotubes: A Straightforward Route to High-Performance Epoxy Composites with Interfacially Bonded Nanofillers. Macromolecules, 2018, 51, 5989-6002.	2.2	6
60	Hybrid thermoresponsive graft constructs of fungal polysaccharide \hat{l}^2 -glucan: Physico-chemical and immunomodulatory properties. European Polymer Journal, 2018, 106, 118-127.	2.6	14
61	Interplay of Thermosensitivity and pH Sensitivity of Amphiphilic Block–Gradient Copolymers of Dimethylaminoethyl Acrylate and Styrene. Macromolecules, 2018, 51, 5219-5233.	2.2	19
62	Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules, 2018, 51, 5364-5374.	2.2	18
63	Self-Assembled Thermoresponsive Polymeric Nanogels for ¹⁹ F MR Imaging. Biomacromolecules, 2018, 19, 3515-3524.	2.6	49
64	¹⁹ F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chemistry of Materials, 2018, 30, 4892-4896.	3.2	22
65	Polyelectrolyte pH-Responsive Protein-Containing Nanoparticles: The Physicochemical Supramolecular Approach. Langmuir, 2017, 33, 764-772.	1.6	13
66	Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid and Polymer Science, 2017, 295, 1259-1270.	1.0	14
67	The effect of ionizing radiation on biocompatible polymers: From sterilization to radiolysis and hydrogel formation. Polymer Degradation and Stability, 2017, 137, 1-10.	2.7	25
68	Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis?. Advanced Healthcare Materials, 2017, 6, 1601115.	3.9	38
69	One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polymer Chemistry, 2017, 8, 1999-2004.	1.9	27
70	Novel nanoparticle delivery systems for rifampicin: an effective strategy against tuberculosis?. Nanomedicine, 2017, 12, 1359-1361.	1.7	3
71	Targeting Glioma Cancer Cells with Fluorescent Nanodiamonds via Integrin Receptors. Methods in Pharmacology and Toxicology, 2017, , 169-189.	0.1	2
72	Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. European Polymer Journal, 2017, 93, 116-131.	2.6	44

#	Article	IF	Citations
73	A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable ¹²⁵ I-radiolabeled NaYF ₄ :Yb ³⁺ /Er ³⁺ @PEG nanoparticles for multimodal <i>in vivo</i> tissue imaging. Nanoscale, 2017, 9, 16680-16688.	2.8	63
74	Thermoresponsive \hat{l}^2 -glucan-based polymers for bimodal immunoradiotherapy $\hat{a} \in \hat{l}^4$ Are they able to promote the immune system?. Journal of Controlled Release, 2017, 268, 78-91.	4.8	12
75	Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: InÂvitro and inÂvivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials, 2017, 146, 1-12.	5.7	84
76	Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside. Journal of Physical Chemistry Letters, 2017, 8, 3800-3804.	2.1	44
77	Carbon nanospecies affecting amyloid formation. RSC Advances, 2017, 7, 53887-53898.	1.7	11
78	Novel triphilic block copolymers based on poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-oxazoline) with different terminal perfluoroalkyl fragments: Synthesis and self-assembly behaviour. European Polymer Journal, 2017, 88, 645-655.	2.6	20
79	System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 307-315.	1.7	38
80	Double stimuli-responsive polymer systems: How to use crosstalk between pH- and thermosensitivity for drug depots. European Polymer Journal, 2016, 84, 54-64.	2.6	14
81	Modified glycogen as construction material for functional biomimetic microfibers. Carbohydrate Polymers, 2016, 152, 271-279.	5.1	10
82	Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles. Colloid and Polymer Science, 2016, 294, 1225-1235.	1.0	14
83	Biomedical Application of Block Copolymers. , 2016, , 231-250.		1
84	Temoporfin-loaded 1-tetradecanol-based thermoresponsive solid lipid nanoparticles for photodynamic therapy. Journal of Controlled Release, 2016, 241, 34-44.	4.8	33
85	Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best?. Langmuir, 2016, 32, 6115-6122.	1.6	40
86	Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale, 2016, 8, 6958-6963.	2.8	54
87	Supramolecular Structures and Self-Association Processes in Polymer Systems. Physiological Research, 2016, 65, S165-S178.	0.4	2
88	Biodegradable system for drug delivery of hydrolytically labile azanucleoside drugs. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 222-230.	0.2	2
89	Seven Years of Radionuclide Laboratory at IMC – Important Achievements. Physiological Research, 2016, 65, S191-S201.	0.4	0
90	318 Glycogen-based hybrid copolymers as a biodegradable construction materials for drug delivery purposes. European Journal of Cancer, 2015, 51, S61.	1.3	1

#	Article	IF	Citations
91	A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines. International Journal of Molecular Sciences, 2015, 16, 21658-21680.	1.8	10
92	<i>In vitro</i> dissolution study of acetylsalicylic acid solid dispersions. Tunable drug release allowed by the choice of polymer matrix. Pharmaceutical Development and Technology, 2015, 20, 935-940.	1.1	6
93	Thermoresponsive polymer system based on poly(N-vinylcaprolactam) intended for local radiotherapy applications. Applied Radiation and Isotopes, 2015, 98, 7-12.	0.7	9
94	Smart polymers in drug delivery systems on crossroads: Which way deserves following?. European Polymer Journal, 2015, 65, 82-97.	2.6	111
95	Bifunctional Cyclamâ€Based Ligands with Phosphorus Acid Pendant Moieties for Radiocopper Separation: Thermodynamic and Kinetic Studies. Chemistry - A European Journal, 2015, 21, 4671-4687.	1.7	18
96	Supramolecular self-assembly of novel thermo-responsive double-hydrophilic and hydrophobic Y-shaped [MPEO-b-PEtOx-b-(PCL) ₂] terpolymers. RSC Advances, 2015, 5, 62844-62854.	1.7	6
97	Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems. Applied Radiation and Isotopes, 2015, 95, 129-134.	0.7	5
98	Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale, 2015, 7, 415-420.	2.8	87
99	Abstract 5195: A novel, multimodal theranostic nanoprobe is effectively incorporated into melanoma brain metastatic cells., 2015,,.		0
100	Multi-responsive polymer micelles as ellipticine delivery carriers for cancer therapy. Anticancer Research, 2015, 35, 753-7.	0.5	3
101	Glycogen-graft-poly(2-alkyl-2-oxazolines) $\hat{a}\in$ " the new versatile biopolymer-based thermoresponsive macromolecular toolbox. RSC Advances, 2014, 4, 61580-61588.	1.7	22
102	Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: Electrophoretic characterisation of carboxyl- and amine-modified particles. Journal of Colloid and Interface Science, 2014, 421, 146-153.	5.0	13
103	Chelating polymeric beads as potential therapeutics for Wilson's disease. European Journal of Pharmaceutical Sciences, 2014, 62, 1-7.	1.9	9
104	Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochemistry and Cell Biology, 2014, 141, 229-239.	0.8	14
105	Self-association of bee propolis: effects on pharmaceutical applications. Journal of Pharmaceutical Investigation, 2014, 44, 15-22.	2.7	3
106	Structural Diversity of Solid Dispersions of Acetylsalicylic Acid As Seen by Solid-State NMR. Molecular Pharmaceutics, 2014, 11, 516-530.	2.3	57
107	Fluorescent Nanodiamonds with Bioorthogonally Reactive Proteinâ€Resistant Polymeric Coatings. ChemPlusChem, 2014, 79, 21-24.	1.3	53
108	Silverâ€coated monolithic columns for separation in radiopharmaceutical applications. Journal of Separation Science, 2014, 37, 798-802.	1.3	27

#	Article	IF	CITATIONS
109	Self-Assembly Thermodynamics of pH-Responsive Amino-Acid-Based Polymers with a Nonionic Surfactant. Langmuir, 2014, 30, 11307-11318.	1.6	15
110	Study of Complex Thermosensitive Amphiphilic Polyoxazolines and Their Interaction with Ionic Surfactants. Are Hydrophobic, Thermosensitive, and Hydrophilic Moieties Equally Important?. Journal of Physical Chemistry B, 2014, 118, 4940-4950.	1.2	25
111	Multistage-targeted pH-responsive polymer conjugate of Auger electron emitter: Optimized design and in vivo activity. European Journal of Pharmaceutical Sciences, 2014, 63, 216-225.	1.9	11
112	Biopolymer-based degradable nanofibres from renewable resources produced by freeze-drying. RSC Advances, 2013, 3, 15282.	1.7	15
113	Fine tuning of the pH-dependent drug release rate from polyHPMA-ellipticinium conjugates. Bioorganic and Medicinal Chemistry, 2013, 21, 5669-5672.	1.4	18
114	Chelating polymeric particles intended for the therapy of Wilson's disease. Reactive and Functional Polymers, 2013, 73, 1426-1431.	2.0	8
115	Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties. Journal of Applied Crystallography, 2013, 46, 1690-1698.	1.9	18
116	Collective polyelectrolyte diffusion as a function of counterion size and dielectric constant. Polymer International, 2013, 62, 1271-1276.	1.6	8
117	Glycogen as a Biodegradable Construction Nanomaterial for in vivo Use. Macromolecular Bioscience, 2012, 12, 1731-1738.	2.1	25
118	Selfâ€Assembled Polymeric Chelate Nanoparticles as Potential Theranostic Agents. ChemPhysChem, 2012, 13, 4244-4250.	1.0	4
119	Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation. Bioorganic and Medicinal Chemistry, 2012, 20, 4056-4063.	1.4	39
120	Preparation of stable Pd nanocubes and their use in biological labeling. Colloids and Surfaces B: Biointerfaces, 2012, 100, 205-208.	2.5	6
121	Poly(2â€Oxazoline)s – Are They More Advantageous for Biomedical Applications Than Other Polymers?. Macromolecular Rapid Communications, 2012, 33, 1648-1662.	2.0	256
122	Thermoresponsive Nanoparticles Based on Poly(2â€alkylâ€2â€Oxazolines) and Pluronic F127. Macromolecular Rapid Communications, 2012, 33, 1683-1689.	2.0	19
123	Ellipticine-Aimed Polymer-Conjugated Auger Electron Emitter: Multistage Organelle Targeting Approach. Bioconjugate Chemistry, 2011, 22, 1194-1201.	1.8	15
124	Lutetium-177 and iodine-131 loaded chelating polymer microparticles intended for radioembolization of liver malignancies. Reactive and Functional Polymers, 2011, 71, 1155-1159.	2.0	8
125	Thermoresponsive polymeric radionuclide delivery systemâ€"An injectable brachytherapy. European Journal of Pharmaceutical Sciences, 2011, 42, 484-488.	1.9	30
126	Fluorescent magnetic nanoparticles for biomedical applications. Journal of Materials Chemistry, 2011, 21, 7630.	6.7	99

#	Article	IF	CITATIONS
127	Hydrazone-based hydrogel hydrolytically degradable in acidic environment. Polymer Degradation and Stability, 2011, 96, 756-759.	2.7	15
128	Novel Polymeric Nanoparticles Assembled by Metal Ion Addition. Macromolecular Chemistry and Physics, 2011, 212, 2339-2348.	1.1	11
129	A new type of irreversibly reductively biodegradable hydrogel. Polymer Degradation and Stability, 2011, 96, 892-897.	2.7	7
130	Thermoresponsive micelles for radionuclide delivery. Journal of Controlled Release, 2010, 148, e60-e62.	4.8	9
131	Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems. Macromolecular Bioscience, 2010, 10, 916-924.	2.1	88
132	Biodistribution of a radiolabelled thermoresponsive polymer in mice. Applied Radiation and Isotopes, 2010, 68, 1073-1078.	0.7	16
133	New coupling strategy for radionuclide labeling of synthetic polymers. Applied Radiation and Isotopes, 2010, 68, 334-339.	0.7	5
134	Interactions between iron and titanium metabolism in spinach: A chlorophyll fluorescence study in hydropony. Journal of Plant Physiology, 2010, 167, 1592-1597.	1.6	25
135	pH Sensitive Polymer Nanoparticles: Effect of Hydrophobicity on Self-Assembly. Langmuir, 2010, 26, 14450-14457.	1.6	26
136	Novel polymer vectors of 64Cu. Radiochimica Acta, 2009, 97, 747-752.	0.5	4
137	Thermoresponsive, Hydrolytically Degradable Polymer Micelles Intended for Radionuclide Delivery. Macromolecular Bioscience, 2009, 9, 1016-1027.	2.1	45
138	New binary thermoresponsive polymeric system for local chemoradiotherapy. Journal of Applied Polymer Science, 2009, 111, 2220-2228.	1.3	16
139	Biological Evaluation of Polymeric Micelles with Covalently Bound Doxorubicin. Bioconjugate Chemistry, 2009, 20, 2090-2097.	1.8	63
140	Elicitation of Pharmacologically Active Substances in an Intact Medical Plant. Journal of Agricultural and Food Chemistry, 2009, 57, 7907-7911.	2.4	45
141	A new chemical modification of liquid polybutadienes: Radical addition of aliphatic aldehydes onto pending vinyl groups. Journal of Polymer Science Part A, 2008, 46, 3919-3925.	2.5	8
142	Study of pepsin phosphorylation using immobilized metal affinity chromatography. Journal of Separation Science, 2008, 31, 1662-1668.	1.3	4
143	Immobilized Metal Affinity Chromatography of Phosphorylated Proteins Using High Performance Sorbents. Chromatographia, 2008, 68, 381-386.	0.7	8
144	Novel pH-Responsive Nanoparticles. Langmuir, 2008, 24, 9295-9301.	1.6	52

#	Article	IF	CITATIONS
145	Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons. Chemosphere, 2008, 72, 1721-1726.	4.2	9
146	New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. Journal of Controlled Release, 2007, 119, 25-33.	4.8	50
147	Poly(ethylene oxide)-coated polyamide nanoparticles degradable by glutathione. Colloid and Polymer Science, 2007, 285, 569-574.	1.0	8
148	Thermoresponsive polymeric nanoparticles stabilized by surfactants. Colloid and Polymer Science, 2007, 285, 1433-1439.	1.0	31
149	Phosphotriesterase modified by poly[N-(2-hydroxypropyl)methacrylamide]. Toxicology, 2007, 233, 235.	2.0	4
150	The effect of simultaneous magnesium application on the biological effects of titanium. Plant, Soil and Environment, 2007, 53, 16-23.	1.0	11
151	Astatination of nanoparticles containing silver as possible carriers of 211At. Applied Radiation and Isotopes, 2006, 64, 201-206.	0.7	41
152	Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental, 2006, 66, 258-264.	10.8	156
153	Hydroxybisphosphonate-containing polymeric drug-delivery systems designed for targeting into bone tissue. Journal of Applied Polymer Science, 2006, 101, 3192-3201.	1.3	35
154	Thermoresponsive Polymeric Nanoemulsions. Macromolecular Rapid Communications, 2006, 27, 877-881.	2.0	15
155	Affinity chromatography of porcine pepsin A using quinolin-8-ol as ligand. Journal of Chromatography A, 2005, 1084, 108-112.	1.8	4
156	Thermoresponsive polymers as promising new materials for local radiotherapy. Applied Radiation and Isotopes, 2005, 63, 423-431.	0.7	39
157	Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates. Applied Catalysis B: Environmental, 2005, 59, 267-274.	10.8	19
158	Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release, 2005, 103, 137-148.	4.8	353
159	Poly(allyl glycidyl ether)-block-poly(ethylene oxide): A novel promising polymeric intermediate for the preparation of micellar drug delivery systems. Journal of Applied Polymer Science, 2005, 95, 201-211.	1.3	64
160	The role of titanium in biomass production and its influence on essential elements' contents in field growing crops. Plant, Soil and Environment, 2005, 51, 19-25.	1.0	21
161	Interactions of phenols with silver(I), copper(II) and iron(III) complexes of chelating methacrylate-based polymeric sorbent containing quinolin-8-ol groups. Reactive and Functional Polymers, 2004, 59, 105-118.	2.0	24
162	Cleavage of double stranded plasmid DNA by lanthanide complexes. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 800, 169-173.	1.2	24

#	Article	IF	CITATION
163	Mechanism of Physiological Effects of Titanium Leaf Sprays on Plants Grown on Soil. Biological Trace Element Research, 2003, 91, 179-190.	1.9	42
164	Bifunctional Ion Exchange Resin with Thiol and Quaternary Ammonium Groups for the Sorption of Arsenate. Collection of Czechoslovak Chemical Communications, 2003, 68, 2159-2170.	1.0	8
165	CONTRIBUTION TO UNDERSTANDING THE MECHANISM OF TITANIUM ACTION IN PLANT. Journal of Plant Nutrition, 2002, 25, 577-598.	0.9	79
166	Influence of some fertilizer chemical properties on magnesium resorption from leaf surface of oats. Journal of Plant Nutrition, 1999, 22, 1241-1251.	0.9	2