Bernard G Barthes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4825259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using carbonate absorbance peak to select the most suitable regression model before predicting soil inorganic carbon concentration by mid-infrared reflectance spectroscopy. Geoderma, 2022, 405, 115403.	5.1	10
2	Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in Sine Saloum (Senegal). Catena, 2022, 212, 106075.	5.0	12
3	Infrared spectroscopy approaches support soil organic carbon estimations to evaluate land degradation. Land Degradation and Development, 2021, 32, 310-322.	3.9	11
4	Concurrent starch accumulation in stump and high fruit production in coffee (<i>Coffea) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10	Tf 50 622 Td (

5	Comparison of soil organic carbon stocks predicted using visible and near infrared reflectance (VNIR) spectra acquired in situ vs. on sieved dried samples: Synthesis of different studies. Soil Security, 2021, 5, 100024.	2.3	3
6	Diversity and socio-economic aspects of oil palm agroforestry systems on the Allada plateau, southern Benin. Agroforestry Systems, 2020, 94, 41-56.	2.0	11
7	Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties. Data in Brief, 2020, 31, 106013.	1.0	10
8	A Congo Basin ethnographic analogue of pre-Columbian Amazonian raised fields shows the ephemeral legacy of organic matter management. Scientific Reports, 2020, 10, 10851.	3.3	9
9	Comparative analysis of nutritional status and growth of immature oil palm in various intercropping systems in southern Benin. Experimental Agriculture, 2020, 56, 371-386.	0.9	3
10	Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library. Geoderma, 2020, 375, 114469.	5.1	36
11	Improvement in spectral library-based quantification of soil properties using representative spiking and local calibration – The case of soil inorganic carbon prediction by mid-infrared spectroscopy. Geoderma, 2020, 369, 114272.	5.1	21
12	Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions. Science of the Total Environment, 2019, 686, 764-773.	8.0	27
13	Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen. Geoderma, 2019, 338, 422-429.	5.1	39
14	Prediction of total silicon concentrations in French soils using pedotransfer functions from mid-infrared spectrum and pedological attributes. Geoderma, 2018, 331, 70-80.	5.1	14
15	Ramial wood amendments (<scp><i>Piliostigma reticulatum</i></scp>) mitigate degradation of tropical soils but do not replenish nutrient exports. Land Degradation and Development, 2018, 29, 2694-2706.	3.9	15
16	Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems and Environment, 2017, 236, 243-255.	5.3	158
17	National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma, 2016, 276, 41-52.	5.1	91
18	Studying the Physical Protection of Soil Carbon with Quantitative Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 199-214.	1.5	13

BERNARD G BARTHES

#	Article	IF	CITATIONS
19	A global spectral library to characterize the world's soil. Earth-Science Reviews, 2016, 155, 198-230.	9.1	546
20	Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field. Geoderma, 2016, 261, 151-159.	5.1	55
21	Physical protection of soil carbon in macroaggregates does not reduce the temperature dependence of soil CO ₂ emissions. Journal of Plant Nutrition and Soil Science, 2015, 178, 592-600.	1.9	8
22	Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon — A case study in a Mediterranean context. Geoderma, 2015, 259-260, 288-299.	5.1	121
23	Effect of ramial wood amendment on sorghum production and topsoil quality in a Sudano-Sahelian ecosystem (central Burkina Faso). Agroforestry Systems, 2015, 89, 81-93.	2.0	11
24	Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy, 2015, , 139-159.	5.2	288
25	Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma, 2014, 214-215, 126-134.	5.1	46
26	Comparing near and Mid-Infrared Reflectance Spectroscopy for Determining Properties of Malagasy Soils, Using Global or LOCAL Calibration. Journal of Near Infrared Spectroscopy, 2013, 21, 495-509.	1.5	26
27	Near Infrared Reflectance Spectroscopy Applied to Model the Transformation of Added Organic Materials in Soil. Journal of Near Infrared Spectroscopy, 2012, 20, 339-351.	1.5	6
28	Prediction of soil organic and inorganic carbon contents at a national scale (France) using midâ€infrared reflectance spectroscopy (MIRS). European Journal of Soil Science, 2012, 63, 141-151.	3.9	62
29	Use of Near Infrared Reflectance Spectroscopy (NIRS) for Predicting Soil Fertility and Historical Management. Communications in Soil Science and Plant Analysis, 2011, 42, 1692-1705.	1.4	9
30	Black carbon estimation in French calcareous soils using chemoâ€ŧhermal oxidation method. Soil Use and Management, 2011, 27, 333-339.	4.9	13
31	Near infrared reflectance spectroscopy: A tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil. Soil Biology and Biochemistry, 2011, 43, 197-205.	8.8	44
32	Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community. Soil Biology and Biochemistry, 2011, 43, 1649-1659.	8.8	17
33	Determination of potential denitrification in a range of tropical topsoils using near infrared reflectance spectroscopy (NIRS). Applied Soil Ecology, 2010, 46, 81-89.	4.3	10
34	Effets deÂl'apport deÂbois raméal surÂlaÂplante etÂleÂsol: uneÂrevueÂdesÂrésultats expérimentaux. Cal Agricultures, 2010, 19, 280-287.	niers 0.9	14
35	Assessment and monitoring of soil quality using nearâ€infrared reflectance spectroscopy (NIRS). European Journal of Soil Science, 2009, 60, 770-784.	3.9	179
36	Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS). Environmental Pollution, 2009, 157, 3120-3125.	7.5	43

#	Article	IF	CITATIONS
37	Comparison between predictions of C and N contents in tropical soils using a Vis–NIR spectrometer including a fibre-optic probe versus a NIR spectrometer including a sample transport module. Biosystems Engineering, 2008, 100, 448-452.	4.3	20
38	Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples. Soil Biology and Biochemistry, 2008, 40, 1533-1537.	8.8	63
39	Pairwise comparison of soil organic particle-size distributions in native savannas and Eucalyptus plantations in Congo. Forest Ecology and Management, 2008, 255, 1050-1056.	3.2	33
40	Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma, 2008, 143, 14-25.	5.1	168
41	Avaliação de atributos fÃsicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial. Revista Brasileira De Ciencia Do Solo, 2008, 32, 789-800.	1.3	42
42	Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma, 2007, 139, 106-117.	5.1	146
43	Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues—An experimental study (Madagascar). Soil Biology and Biochemistry, 2007, 39, 2119-2128.	8.8	78
44	Long-term effect ofÂaÂlegume cover crop (MucunaÂpruriens var. utilis) onÂtheÂcommunities ofÂsoil macrofauna andÂnematofauna, under maize cultivation, inÂsouthern Benin. European Journal of Soil Biology, 2006, 42, S136-S144.	3.2	104
45	Determination of Total Carbon and Nitrogen Content in a Range of Tropical Soils Using near Infrared Spectroscopy: Influence of Replication and Sample Grinding and Drying. Journal of Near Infrared Spectroscopy, 2006, 14, 341-348.	1.5	66
46	Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agriculture, Ecosystems and Environment, 2006, 115, 285-289.	5.3	72
47	Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under Maize Cultivation in Southern Benin. , 2005, , 143-155.		5
48	Effect of a legume cover crop (<i>Mucuna pruriens</i> var. <i>utilis</i>) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management, 2004, 20, 231-239.	4.9	39
49	Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 2002, 47, 133-149.	5.0	564
50	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 61, 159-170.	2.2	81
51	Field-scale run-off and erosion in relation to topsoil aggregate stability in three tropical regions (Benin, Cameroon, Mexico). European Journal of Soil Science, 2000, 51, 485-495.	3.9	57
52	Relations entre stabilité de l'agrégation et matière organique totale et soluble à l'eau chaude dans des sols ferrallitiques argileux (Congo, Brésil). Canadian Journal of Soil Science, 1999, 79, 561-569.	1.2	10
53	Relationship between soil erodibility and topsoil aggregate stability or carbon content in a cultivated mediterranean highland (Aveyron, France). Communications in Soil Science and Plant Analysis, 1999, 30, 1929-1938.	1.4	56
54	La matiére organique soluble à l'eau chaude et la stabilityé de l'agrégation. Aspects méthodologiques et application à des sols ferrallitiques du Congo. European Journal of Soil Science, 1997, 48, 239-247.	3.9	14

#	Article	IF	CITATIONS
55	Effet à court terme de la mise en culture sur le statut organique et l'agrégation d'un sol ferrallitique argileux du Congo. Canadian Journal of Soil Science, 1996, 76, 493-499.	1.2	4