Anne A Van Dam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4824681/publications.pdf Version: 2024-02-01

ANNE A VAN DAN

#	Article	IF	CITATIONS
1	Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology, 2010, 44, 633-667.	1.5	208
2	The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries, 2002, 12, 1-31.	4.9	142
3	Worth of wetlands: revised global monetary values of coastal and inland wetland ecosystem services. Marine and Freshwater Research, 2019, 70, 1189.	1.3	114
4	Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture, 2008, 275, 152-162.	3.5	106
5	Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective. Aquatic Ecology, 2015, 49, 513-548.	1.5	97
6	Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquaculture Research, 2001, 32, 189-197.	1.8	93
7	Towards a global model for wetlands ecosystem services. Current Opinion in Environmental Sustainability, 2019, 36, 11-19.	6.3	93
8	Evaluation of polyculture of Indian major carps in periphyton-based ponds. Aquaculture, 2002, 213, 131-149.	3.5	81
9	The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquaculture Research, 2001, 32, 209-216.	1.8	69
10	A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture, 2002, 212, 227-243.	3.5	69
11	The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquatic Living Resources, 2002, 15, 231-241.	1.2	62
12	Simulation of the effects of oxygen on food consumption and growth of Nile tilapia, Oreochromis niloticus (L.). Aquaculture Research, 1995, 26, 427-440.	1.8	58
13	The effect of periphyton and supplemental feeding on the production of the indigenous carps Tor khudree and Labeo fimbriatus. Aquaculture, 2002, 213, 207-218.	3.5	58
14	A characterization of the drivers, pressures, ecosystem functions and services of Namatala wetland, Uganda. Environmental Science and Policy, 2013, 34, 44-57.	4.9	56
15	Optimization of fertilization rate for maximizing periphyton production on artificial substrates and the implications for periphyton-based aquaculture. Aquaculture Research, 2001, 32, 749-760.	1.8	53
16	The effects of periphyton substrate and fish stocking density on water quality, phytoplankton, periphyton and fish growth. Aquaculture Research, 2003, 34, 685-695.	1.8	53
17	Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L Aquaculture Research, 2003, 34, 85-92.	1.8	46
18	A simulation model for nitrogen retention in a papyrus wetland near Lake Victoria, Uganda (East) Tj ETQq0 0) rgBT /Over	lock 10 Tf 50

2

Anne A Van Dam

#	Article	IF	CITATIONS
19	Effects of bamboo substrate and supplemental feeding on growth and production of hybrid red tilapia fingerlings (Oreochromis mossambicus×Oreochromis niloticus). Aquaculture, 2004, 235, 303-314.	3.5	44
20	Effects of dietary starch and energy levels on maximum feed intake, growth and metabolism of Nile tilapia, Oreochromis niloticus. Aquaculture, 2008, 277, 213-219.	3.5	44
21	Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecological Modelling, 2002, 147, 123-152.	2.5	42
22	Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
23	An agro-ecological evaluation of aquaculture integration into farming systems of the Mekong Delta. Agriculture, Ecosystems and Environment, 2010, 138, 232-241.	5.3	38
24	Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration. Aquaculture Research, 2012, 43, 730-744.	1.8	38
25	A synthesis of past, current and future research for protection and management of papyrus (Cyperus) Tj ETQq1 1	0,784314 1.5	l rgBT /Overl
26	Linking Hydrology, Ecosystem Function, and Livelihood Outcomes in African Papyrus Wetlands Using a Bayesian Network Model. Wetlands, 2013, 33, 381-397.	1.5	36
27	Effect of organic nitrogen and carbon mineralization on sediment organic matter accumulation in fish ponds. Aquaculture Research, 2005, 36, 1001-1014.	1.8	33
28	The role of sediments for phosphorus retention in the Kirinya wetland (Uganda). Wetlands Ecology and Management, 2007, 15, 481-488.	1.5	33
29	Serving many at once: How a database approach can create unity in dynamical ecosystem modelling. Environmental Modelling and Software, 2014, 61, 266-273.	4.5	31
30	Integration of smallholder wetland aquaculture?agriculture systems (fingerponds) into riparian farming systems on the shores of Lake Victoria, Kenya: socio-economics and livelihoods. Geographical Journal, 2007, 173, 257-272.	3.1	29
31	The ecology of livelihoods in East African papyrus wetlands (ECOLIVE). Reviews in Environmental Science and Biotechnology, 2011, 10, 291-300.	8.1	28
32	Effects of agricultural land use on sediment and nutrient retention in valley-bottom wetlands of Migina catchment, southern Rwanda. Journal of Environmental Management, 2018, 219, 103-114.	7.8	24
33	Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models. Current Opinion in Environmental Sustainability, 2019, 36, 85-95.	6.3	23
34	Towards decision support-based integrated management planning of papyrus wetlands: a case study from Uganda. Wetlands Ecology and Management, 2014, 22, 199-213.	1.5	22
35	A dynamic simulation model for growth of the African catfish, Clarias gariepinus (Burchell 1822). Aquaculture, 1987, 60, 55-71.	3.5	21
36	Papyrus Wetlands. , 2018, , 183-197.		20

Anne A Van Dam

#	Article	IF	CITATIONS
37	Effects of water depth and livelihood activities on plant species composition and diversity in Nyando floodplain wetland, Kenya. Wetlands Ecology and Management, 2014, 22, 177-189.	1.5	18
38	Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda. Environmental Management, 2017, 60, 496-512.	2.7	18
39	Exploring the trophic structure in organically fertilized and feed-driven tilapia culture environments using multivariate analyses. Aquaculture Research, 2006, 37, 151-163.	1.8	17
40	Parameterization and calibration of a model to simulate effects of feeding level and feed composition on growth of Oreochromis niloticus (L.) and Oncorhynchus mykiss (Walbaum). Aquaculture Research, 1995, 26, 415-425.	1.8	13
41	Effects of conversion of wetlands to rice and fish farming on water quality in valley bottoms of the Migina catchment, southern Rwanda. Ecological Engineering, 2018, 125, 76-86.	3.6	13
42	Evaluation of nitrogen cycling and fish production in seasonal ponds (â€̃Fingerponds') in Lake Victoria wetlands, East Africa using a dynamic simulation model. Aquaculture Research, 2010, 42, 74-90.	1.8	12
43	Hydrology and the functioning of seasonal wetland aquaculture–agriculture systems (Fingerponds) at the shores of Lake Victoria, Kenya. Aquacultural Engineering, 2007, 37, 202-214.	3.1	11
44	A simulation model for nitrogen cycling in natural rooted papyrus wetlands in East Africa. Wetlands Ecology and Management, 2014, 22, 157-176.	1.5	10
45	Modelling nitrogen and phosphorus cycling and retention in Cyperus papyrus dominated natural wetlands. Environmental Modelling and Software, 2019, 122, 104531.	4.5	10
46	The Impact of Wastewater Discharge and Agriculture on Water Quality and Nutrient Retention of Namatala Wetland, Eastern Uganda. Frontiers in Environmental Science, 2020, 8, .	3.3	10
47	Increasing fish production from wetlands at Lake Victoria, Uganda using organically manured seasonal wetland fish ponds. Wetlands Ecology and Management, 2009, 17, 257-277.	1.5	8
48	Environmental impact of seasonal integrated aquaculture ponds ('fingerponds') in the wetlands of Lake Victoria, Kenya: an assessment, with the aid of Bayesian Networks. African Journal of Aquatic Science, 2007, 32, 219-234.	1.1	7
49	Enhancing the fish production potential of Lake Victoria papyrus wetlands, Kenya, using seasonal flood-dependent ponds. Wetlands Ecology and Management, 2010, 18, 471-483.	1.5	7
50	Modelling growth ofColossoma macropomum(Cuvier): comparison of an empirical and an explanatory model. Aquaculture Research, 1998, 29, 313-332.	1.8	6
51	Simulation of food and oxygen limitations on the growth of Nile tilapia, Oreochromis niloticus L., in fishponds. Aquaculture Research, 1996, 27, 463-478.	1.8	4
52	Papyrus Wetlands. , 2016, , 1-15.		3
53	Multiple regression analysis of accumulated data from aquaculture experiments: a rice-fish culture example. Aquaculture Research, 1990, 21, 1-15.	1.8	2
54	The effect of seasonal flooding and livelihood activities on retention of nitrogen and phosphorus in Cyperus papyrus wetlands, the role of aboveground biomass. Hydrobiologia, 2021, 848, 4135-4152.	2.0	2

#	Article	IF	CITATIONS
55	Sustainable Use of Papyrus from Lake Victoria, Kenya. , 2018, , 1113-1124.		0
56	Fluxes and retention of sediment and nutrients in valley bottom fish and rice farms and wetlands: impacts on surface water. Wetlands Ecology and Management, 2022, 30, 273.	1.5	0
57	Agricultural Case Studies. , 2022, , .		0