Haizheng Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4824168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigations on a 1ÂK hybrid cryocooler composed of a four-stage Stirling-type pulse tube cryocooler and a Joule-Thomson cooler. Part B: Experimental verifications. Cryogenics, 2022, 123, 103452.	0.9	6
2	Design and Experimental Investigations on the Helium Circulating Cooling System Operating at Around 20 K for a 300-kvar Class HTS Dynamic Synchronous Condenser. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	3
3	A Long-Life, High-Capacity and High-Efficiency Cryogenic System Developed for High-Tc Superconducting Magnet Applications. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	1
4	Investigations on a 1ÂK hybrid cryocooler composed of a four-stage Stirling-type pulse tube cryocooler and a Joule-Thomson cooler. Part A: Theoretical analyses and modeling. Cryogenics, 2021, 116, 103282.	0.9	11
5	Investigation of a 1.6 K Space Cryocooler for Cooling the Superconducting Nanowire Single Photon Detectors. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	2
6	A 1-2 K Cryogenic System With Light Weight, Long Life, Low Vibration, Low EMI and Flexible Cooling Capacity for the Superconducting Nanowire Single-Photon Detector. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	7
7	Investigations on a 3.3ÂK four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications. Cryogenics, 2020, 105, 103015.	0.9	14
8	Investigations on a 3.3ÂK four-stage Stirling-type pulse tube cryocooler. Part A: Theoretical analyses and modeling. Cryogenics, 2020, 105, 103014.	0.9	5
9	A single-stage Stirling-type pulse tube cryocooler achieving 1080ÂW at 77ÂK with four cold fingers driven by one linear compressor. Cryogenics, 2020, 106, 103045.	0.9	5
10	Theoretical modeling and experimental verifications of the single-compressor-driven three-stage Stirling-type pulse tube cryocooler. Frontiers in Energy, 2019, 13, 450-463.	1.2	5
11	Theoretical and experimental investigations on a 12 kW Oxford-type dual-opposed moving-coil linear compressor. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012039.	0.3	0
12	Theoretical modeling and experimental verification of the motor design for a 500â€⁻g micro moving-coil linear compressor operating at 90–140â€⁻Hz. International Journal of Refrigeration, 2019, 104, 502-512.	1.8	4
13	Development of 2-K Space Cryocoolers for Cooling the Superconducting Nanowire Single Photon Detector. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.1	11
14	Investigations on the three-stage gas-coupled Stirling-type pulse tube cryocooler. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012038.	0.3	0
15	Investigation of a coaxial Stirling-type pulse tube cryocooler with the cooling capacity of 600 W at 77 K. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012032.	0.3	0
16	Modelling and experimental study of a 700 g micro coaxial Stirling-type pulse tube cryocooler operating at 100-190 Hz. IOP Conference Series: Materials Science and Engineering, 2019, 502, 012031.	0.3	1
17	CFD modeling and experimental verification of oscillating flow and heat transfer processes in the micro coaxial Stirling-type pulse tube cryocooler operating at 90–170†Hz. Cryogenics, 2018, 90, 30-40.	0.9	17
18	Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices. Cryogenics, 2018, 93, 7-16.	0.9	16

HAIZHENG DANG

#	Article	IF	CITATIONS
19	Theoretical and experimental investigations on the cooling capacity distributions at the stages in the thermally-coupled two-stage Stirling-type pulse tube cryocooler without external precooling. Cryogenics, 2017, 82, 48-61.	0.9	8
20	Investigation on a Three-Stage Stirling-Type Pulse Tube Cryocooler for Cooling the Low-T \$_c\$ SQUID. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	9
21	A two-dimensional model of regenerator with mixed matrices and experimental verifications for improving the single-stage Stirling-type pulse tube cryocooler. Applied Thermal Engineering, 2017, 123, 1278-1290.	3.0	12
22	Effects of the driving voltage waveform on the performance of the Stirling-type pulse tube cryocooler driven by the moving-coil linear compressor. International Journal of Refrigeration, 2017, 75, 239-249.	1.8	8
23	Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012008.	0.3	6
24	Entropy analyses of the three-stage thermally-coupled Stirling-type pulse tube cryocooler. Applied Thermal Engineering, 2016, 100, 944-960.	3.0	14
25	Theoretical and experimental investigations on the optimal match between compressor and cold finger of the Stirling-type pulse tube cryocooler. Cryogenics, 2016, 76, 33-46.	0.9	11
26	Dynamic and thermodynamic characteristics of the moving-coil linear compressor for the pulse tube cryocooler: Part B – Experimental verifications. International Journal of Refrigeration, 2016, 69, 497-504.	1.8	9
27	CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30–35 K using mixed stainless steel mesh regenerator matrices. Cryogenics, 2016, 78, 40-50.	0.9	18
28	CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz. Cryogenics, 2016, 73, 53-59.	0.9	23
29	Dynamic and thermodynamic characteristics of the moving-coil linear compressor for the pulse tube cryocooler. Part A: Theoretical analyses and modeling. International Journal of Refrigeration, 2016, 69, 480-496.	1.8	20
30	Theoretical and experimental investigations on the match between pulse tube cold fingers and linear compressors. IOP Conference Series: Materials Science and Engineering, 2015, 101, 012048.	0.3	0
31	Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers. Cryogenics, 2015, 68, 1-18.	0.9	53
32	Theoretical and experimental investigations on the partial scaling method for the Oxford-type moving-coil linear compressor. Cryogenics, 2015, 69, 26-35.	0.9	6
33	An electrical circuit analogy model for analyses and optimizations of the Stirling-type pulse tube cryocooler. Cryogenics, 2015, 71, 18-29.	0.9	16
34	High efficiency pulse tube cryocoolers for aerospace applications. , 2014, , .		1
35	Development of high efficiency pulse tube cryocoolers for spaceborne infrared applications. Proceedings of SPIE, 2012, , .	0.8	1
36	Development of high frequency pulse tube cryocoolers for space applications. AIP Conference Proceedings, 2012, , .	0.3	6

HAIZHENG DANG

#	Article	IF	CITATIONS
37	High-capacity 60K single-stage coaxial pulse tube cryocoolers. Cryogenics, 2012, 52, 205-211.	0.9	16
38	40K single-stage coaxial pulse tube cryocoolers. Cryogenics, 2012, 52, 216-220.	0.9	26
39	10W/90K single-stage pulse tube cryocoolers. Cryogenics, 2012, 52, 221-225.	0.9	12
40	High frequency coaxial pulse tube cryocoolers for cooling infrared focal plane arrays. , 2010, , .		4
41	ANALYSIS AND DESIGN OF THE PULSE TUBE CRYOCOOLER SYSTEM FOR COOLING HTc SQUID. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2005, 41, 91.	0.7	0
42	Review of recent advances in Stirling-type pulse tube cryocoolers. IOP Conference Series: Materials Science and Engineering, 0, 502, 012034.	0.3	6
43	CFD modeling and experimental verifications of a four-stage Stirling-type pulse tube cryocooler. IOP Conference Series: Materials Science and Engineering, 0, 502, 012037.	0.3	1