Luis Santamaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4823978/publications.pdf

Version: 2024-02-01

72 papers

4,633 citations

32 h-index 102487 66 g-index

74 all docs

74 docs citations

74 times ranked 6351 citing authors

#	Article	IF	CITATIONS
1	Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 2002, 23, 137-154.	1.1	499
2	Seed dispersal in changing landscapes. Biological Conservation, 2012, 146, 1-13.	4.1	366
3	A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography, 2006, 33, 924-935.	3.0	342
4	Contrasting effects of invasive plants in plant–pollinator networks. Oecologia, 2008, 155, 761-770.	2.0	284
5	How Foraging Behaviour and Resource Partitioning Can Drive the Evolution of Flowers and the Structure of Pollination Networks. Open Ecology Journal, 2010, 3, 1-11.	2.0	214
6	Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany, 2016, 135, 18-36.	1.6	193
7	Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers?. PLoS Biology, 2007, 5, e31.	5.6	181
8	Why Are So Many Bird Flowers Red?. PLoS Biology, 2004, 2, e350.	5.6	171
9	Migratory Birds as Global Dispersal Vectors. Trends in Ecology and Evolution, 2016, 31, 763-775.	8.7	140
10	Passive internal transport of aquatic organisms by waterfowl in Doñana, south-west Spain. Global Ecology and Biogeography, 2003, 12, 427-436.	5.8	132
11	Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica, 2002, 23, 165-176.	1.1	106
12	Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. Journal of Ecology, 2002, 90, 989-1001.	4.0	105
13	Migratory strategies of waterbirds shape the continentalâ€scale dispersal of aquatic organisms. Ecography, 2013, 36, 430-438.	4.5	86
14	BEHAVIOR RATHER THAN DIET MEDIATES SEASONAL DIFFERENCES IN SEED DISPERSAL BY ASIAN ELEPHANTS. Ecology, 2008, 89, 2684-2691.	3.2	85
15	Space, time and complexity in plant dispersal ecology. Movement Ecology, 2014, 2, 16.	2.8	77
16	Metaâ€Analysis of the Effects of Forest Fragmentation on Interspecific Interactions. Conservation Biology, 2014, 28, 1342-1348.	4.7	77
17	Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology. Remote Sensing, 2017, 9, 392.	4.0	75
18	Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review. Aquatic Botany, 1997, 58, 135-150.	1.6	69

#	Article	IF	Citations
19	Evolution in biodiversity policy – current gaps and future needs. Evolutionary Applications, 2012, 5, 202-218.	3.1	67
20	Selecting appropriate methods of knowledge synthesis to inform biodiversity policy. Biodiversity and Conservation, 2016, 25, 1285-1300.	2.6	64
21	Internal dispersal of seeds by waterfowl: effect of seed size on gut passage time and germination patterns. Die Naturwissenschaften, 2010, 97, 555-565.	1.6	62
22	Field evidence for the potential of waterbirds as dispersers of aquatic organisms. Wetlands, 2005, 25, 252-258.	1.5	58
23	Asian Tapirs Are No Elephants When It Comes To Seed Dispersal. Biotropica, 2012, 44, 220-227.	1.6	56
24	Allometric Scaling of Long-Distance Seed Dispersal by Migratory Birds. American Naturalist, 2013, 181, 649-662.	2.1	53
25	Effect of passage through duck gut on germination of fennel pondweed seeds. Archiv FÃ $\frac{1}{4}$ r Hydrobiologie, 2002, 156, 11-22.	1.1	49
26	Resource Competition, Character Displacement, and the Evolution of Deep Corolla Tubes. American Naturalist, 2007, 170, 455-464.	2.1	49
27	The Network of Knowledge approach: improving the science and society dialogue on biodiversity and ecosystem services in Europe. Biodiversity and Conservation, 2016, 25, 1215-1233.	2.6	44
28	Local adaptation of the pondweedPotamogeton pectinatusto contrasting substrate types mediated by changes in propagule provisioning. Journal of Ecology, 2003, 91, 1081-1092.	4.0	41
29	Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, 2013, 101, 78-85.	4.0	39
30	Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks. PLoS ONE, 2011, 6, e19637.	2.5	38
31	Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behavioral Ecology, 2006, 17, 905-910.	2.2	36
32	COVID-19 effective reproduction number dropped during Spain's nationwide dropdown, then spiked at lower-incidence regions. Science of the Total Environment, 2021, 751, 142257.	8.0	35
33	Frugivore behaviour determines plant distribution: a spatiallyâ€explicit analysis of a plantâ€disperser interaction. Ecography, 2012, 35, 113-123.	4.5	34
34	How far can the freshwater bryozoan Cristatella mucedo disperse in duck guts?. Archiv FÃ $\frac{1}{4}$ r Hydrobiologie, 2003, 157, 547-554.	1.1	33
35	Animal–plant–microbe interactions: direct and indirect effects of swan foraging behaviour modulate methane cycling in temperate shallow wetlands. Oecologia, 2006, 149, 233-244.	2.0	32
36	Predicting Spatial Patterns of Plant Recruitment Using Animal-Displacement Kernels. PLoS ONE, 2007, 2, e1008.	2.5	32

#	Article	IF	CITATIONS
37	Seed size variability: from carob to carats. Biology Letters, 2006, 2, 397-400.	2.3	31
38	Clonal variation in morphological and physiological responses to irradiance and photoperiod for the aquatic angiospermPotamogeton pectinatus. Journal of Ecology, 2002, 90, 859-870.	4.0	29
39	Endozoochorous dispersal of aquatic plants: does seed gut passage affect plant performance?. American Journal of Botany, 2005, 92, 696-699.	1.7	28
40	Endozoochory by ducks: influence of developmental stage of Bythotrephes diapause eggs on dispersal probability. Diversity and Distributions, 2003, 9, 367-374.	4.1	27
41	Facilitating Transitional Processes in Rigid Institutional Regimes for Water Management and Wetland Conservation: Experience from the Guadalquivir Estuary. Ecology and Society, 2012, 17, .	2.3	26
42	Possible role of weaver ants, <i><scp>O</scp>ecophylla smaragdina</i> , in shaping plant–pollinator interactions in <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>A</scp> sia. Journal of Ecology, 2013, 101, 1000-1006.	4.0	25
43	Seasonal acclimation in the photosynthetic and respiratory temperature responses of three submerged freshwater macrophyte species. New Phytologist, 2001, 151, 659-670.	7.3	24
44	Effects of Frugivore Preferences and Habitat Heterogeneity on Seed Rain: A Multi-Scale Analysis. PLoS ONE, 2012, 7, e33246.	2.5	24
45	Strong dependence of a pioneer shrub on seed dispersal services provided by an endemic endangered lizard in a Mediterranean island ecosystem. PLoS ONE, 2017, 12, e0183072.	2.5	24
46	Resource partitioning among flower visitors and evolution of nectar concealment in multi–species communities. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 187-192.	2.6	23
47	Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153008.	2.6	23
48	Clonal variation in the thermal response of the submerged aquatic macrophyte Potamogeton pectinatus. Journal of Ecology, 2002, 90, 141-152.	4.0	22
49	Effects of Matrix Characteristics and Interpatch Distance on Functional Connectivity in Fragmented Temperate Rainforests. Conservation Biology, 2012, 26, 238-247.	4.7	22
50	Long corollas as nectar barriers in Lonicera implexa: interactions between corolla tube length and nectar volume. Evolutionary Ecology, 2015, 29, 419-435.	1.2	22
51	Digital conservation in biosphere reserves: Earth observations, social media, and nature's cultural contributions to people. Conservation Letters, 2020, 13, e12704.	5.7	22
52	Evolution and Biodiversity: the evolutionary basis of biodiversity and its potential for adaptation to global change. Evolutionary Applications, 2012, 5, 103-106.	3.1	21
53	Combined impact of multiple exotic herbivores on different life stages of an endangered plant endemism, <i>Medicago citrina</i>). Journal of Ecology, 2013, 101, 107-117.	4.0	18
54	Forest edges show contrasting effects on an austral mistletoe due to differences in pollination and seed dispersal. Journal of Ecology, 2013, 101, 713-721.	4.0	16

#	Article	IF	Citations
55	Changes in Patch Features May Exacerbate or Compensate for the Effect of Habitat Loss on Forest Bird Populations. PLoS ONE, 2011, 6, e21596.	2.5	15
56	The network BiodiversityKnowledge in practice: insights from three trial assessments. Biodiversity and Conservation, 2016, 25, 1301-1318.	2.6	14
57	Chasing the ghost of infection past: identifying thresholds of change during the COVID-19 infection in Spain. Epidemiology and Infection, 2020, 148, e282.	2.1	13
58	A seed dispersal effectiveness framework across the mutualism–antagonism continuum. Oikos, 2022, 2022, .	2.7	13
59	Flowerâ€visitor selection on floral integration in three contrasting populations of <i>Lonicera implexa</i> . American Journal of Botany, 2016, 103, 325-336.	1.7	11
60	Internal Habitat Quality Determines the Effects of Fragmentation on Austral Forest Climbing and Epiphytic Angiosperms. PLoS ONE, 2012, 7, e48743.	2.5	10
61	Rats and Seabirds: Effects of Egg Size on Predation Risk and the Potential of Conditioned Taste Aversion as a Mitigation Method. PLoS ONE, 2013, 8, e76138.	2.5	10
62	Differential effects of anthropogenic edges and gaps on the reproduction of a forestâ€dwelling plant: The role of plant reproductive effort and nectar robbing by bumblebees. Austral Ecology, 2012, 37, 600-609.	1.5	9
63	Seed dispersal by lizards on a continentalâ€shelf island: predicting interspecific variation in seed rain based on plant distribution and lizard movement patterns. Journal of Biogeography, 2012, 39, 1984-1995.	3.0	9
64	Disentangling the roles of diversity resistance and priority effects in community assembly. Oecologia, 2016, 182, 865-875.	2.0	9
65	Passive partner choice through exploitation barriers. Evolutionary Ecology, 2015, 29, 323-340.	1.2	8
66	Dark Clouds over Spanish Science. Science, 2013, 340, 1292-1292.	12.6	6
67	Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal. BMC Ecology, 2016, 16, 3.	3.0	6
68	Toxic spill caught Spain off guard. Nature, 1998, 395, 110-110.	27.8	5
69	Divergent effects of forest edges on host distribution and seed disperser activity influence mistletoe distribution and recruitment. Journal of Ecology, 2015, 103, 1475-1486.	4.0	5
70	Complementary Differences in Primary Production and Phenology among Vegetation Types Increase Ecosystem Resilience to Climate Change and Grazing Pressure in an Iconic Mediterranean Ecosystem. Remote Sensing, 2021, 13, 3920.	4.0	5
71	Continuous variation in herkogamy enhances the reproductive response of Lonicera implexa to spatial variation in pollinator assemblages. AoB PLANTS, 2020, 12, plz078.	2.3	3
72	Edge effects in a three-dimensional world: height in the canopy modulates edge effects on the epiphyte Sarmienta repens (Gesneriaceae). Plant Ecology, 2013, 214, 965-973.	1.6	2